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Abstract

Background: Regular physical activity (PA) contributes to the primary and secondary prevention of several chronic diseases
and reduces the risk of premature death. Physical inactivity is a modifiable risk factor for cardiovascular disease and a variety of
chronic disorders such as diabetes, obesity, hypertension, bone and joint diseases (eg, osteoporosis and osteoarthritis), depression,
and colon and breast cancer. Population aging and the related increase in chronic diseases have a major impact on the health care
systems of most Western countries and will produce an even more significant effect in the future. Monitoring PA is a valuable
method of determining whether people are performing enough PA so as to prevent chronic diseases or are showing early symptoms
of those diseases.

Objective: The aim of this study was to estimate the accuracy of wearable devices in quantifying the PA of elderly people in
a real-life setting.

Methods: Participants aged 70 to 90 years with the ability to walk safely without any walking aid for at least 300 meters, who
had no walking disabilities or episodes of falling while walking in the last 12 months, were asked to walk 150 meters at their
preferred pace wearing a vívoactive HR device (Garmin Ltd) and actual steps were monitored and tallied by a researcher using
a hand-tally counter to assess the performance of the device at a natural speed. A Bland-Altman plot was used to analyze the
difference between manually counted steps and wearable device–measured steps. The intraclass correlation coefficient (ICC)
was computed (with a 95% confidence interval) between step measurements. The generalized linear mixed-model (GLMM) ICCs
were estimated, providing a random effect term (random intercept) for the individual measurements (gold standard and device).
Both adjusted and conditional ICCs were computed for the GLMM models considering separately the effect of age, sex, BMI,
and obesity. Analyses were performed using R software (R Foundation for Statistical Computing) with the rms package.

Results: A total of 23 females and 26 males were enrolled in the study. The median age of the participants was 75 years. The
Bland-Altman plot revealed that, excluding one observation, all differences across measurements were in the confidence bounds,
demonstrating the substantial agreement between the step count measurements. The results were confirmed by an ICC equal to
.98 (.96-.99), demonstrating excellent agreement between the two sets of measurements.

Conclusions: The level of accuracy of wearable devices in quantifying the PA of elderly people in a real-life setting that was
found in this study supports the idea of considering wrist-wearable nonmedical devices (widely available in nonspecialized stores)
as reliable tools. Both health care professionals and informal caregivers could monitor the level of PA of their patients.
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Introduction

There is remarkable evidence that regular physical activity (PA)
contributes to the primary and secondary prevention of several
chronic diseases and reduces the risk of premature death [1].
There is a linear relation between the amount of PA and health
benefits, such that the most physically active people are at the
lowest risk [1]. However, the greatest improvements in health
status are recorded when people who are the least fit become
physically active [1].

Physical inactivity is a modifiable risk factor for cardiovascular
disease and a variety of chronic disorders such as diabetes,
obesity, hypertension, bone and joint diseases (eg, osteoporosis
and osteoarthritis), depression, and colon and breast cancer [2].
In this framework, primary prevention plays a key role in the
management of these diseases. Moreover, health promotion
programs should target people of all ages, since the risk of
developing chronic diseases starts in childhood and increases
with age [1].

Population aging, and the related increase in chronic diseases,
has a major impact on the health care systems of most Western
countries and will produce an even more significant effect in
the future. It has been calculated that, in 2001, chronic diseases
accounted for approximately 60% of the 56.5 million total
reported deaths in the world and for approximately 46% of the
global burden of disease [3]. Almost half of chronic
disease-related deaths are attributable to cardiovascular diseases.
Obesity and diabetes are also showing worrying trends, not only
because they already affect a large part of the population but
because they have started to appear earlier in people’s lives.
Chronic diseases can be prevented with a healthy diet, avoidance
of tobacco products, and regular PA [4]. Moreover, chronic
diseases lead to a limitation of mobility and PA of affected
persons, with a slow, progressive, and sometimes unnoticed
entry mechanism, culminating in a reduction of autonomy.
Therefore, monitoring PA is a valuable parameter for
determining whether people are performing enough PA to
prevent chronic diseases or if they are showing early symptoms
of those diseases [5].

In recent years, several methods of monitoring PA and sedentary
behavior have been proposed. Self-reporting is a simple tool
for assessing PA via the completion of questionnaires,
interviews, and surveys [6]. Alternatively, PA can be monitored
by diaries or logs, where information on all forms of activity
are recorded day by day. Those tools require a detailed
description of the performed activity, including its intensity and
duration. This method could produce useful health-related data,
but the approach requires considerable worktime to produce
standardized data. The recording of relevant data should be
relatively simple and cover several days to avoid any potential
bias [7].

Videorecording, adopting static cameras, wearable cameras, or
low-cost motion-sensing input systems such as Kinect
(Microsoft Corp), is another example of an autonomous data
collection method [8]. Although this approach has a definite
role in the assessment of activity patterns with the advantage
of direct observation, it is unlikely to be practicable for large
groups of individuals, requiring a great amount of resources to
analyze and quantify videorecordings.

Heart rate monitors are low-cost tools, and heart rate can be
used as a good quality proxy for PA, but it is not a precise
indicator of energy expenditure unless proper individual
calibration is performed. Gold standard techniques for measuring
energy expenditure are based on the double-labeled water
method or indirect calorimetry measuring oxygen uptake, carbon
dioxide production, and cardiopulmonary parameters, but these
techniques, although accurate, require specialized training and
are expensive and not suitable for large-scale studies.

Advances in technology are facilitating researchers to quantify
PA, and accelerometry-based activity monitors may be more
suitable methods. Accelerometers are small and easy-to-use
devices that track movement in 1 to 3 dimensions (ie,
anteroposterior, vertical, and mediolateral). Using these tools,
people can measure the frequency, intensity, and duration of
PA. They are comfortable to wear, relatively inexpensive, and
accurate compared with research-grade PA devices [9].
Accelerometers are technically more advanced than pedometers,
and being multiaxial, they can measure horizontal, lateral, and
vertical movements. These devices can be used to measure steps,
activity counts, energy expenditure, posture, walking, and
different intensities of movement. In addition, the reliability
and validity of accelerometer data are generally high [10].

Recently, more attention has been paid to wrist-worn
accelerometers. They are convenient and comfortable to wear,
and patient compliance improves significantly while
participating in studies requiring prolonged measurements. At
the same time, these systems provide a high level of accuracy.
Furthermore, the integration of additional motion sensors can
be considered to increase the overall performance. Such
integrated sensors may include gyroscopes, magnetometers,
barometers, GPS devices, and physiological sensors (eg, heart
rate) devised to improve the assessment and detection of specific
indicators.

In this sense, wearable motion detectors might be the most
promising technology for enabling an automatic, continuous,
and long-term assessment of subjects in free-living
environments. In addition, the obtained PA parameters can be
shared with health care providers and insurance platforms to
better describe behavioral patterns and functional ability in
high-risk subjects, thus providing important feedback regarding
the overall health status of an individual and even the prediction
of potential adverse health events.

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 5 | e20966 | p. 2https://mhealth.jmir.org/2021/5/e20966
(page number not for citation purposes)

Martinato et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.doi.org/10.2196/20966
http://www.w3.org/Style/XSL
http://www.renderx.com/


Nevertheless, few data are available on the accuracy and
reliability of such devices, which are often built for active sports
or athletes, in an elderly population. Some authors have
validated this device on healthy older adults in studies including
20 participants [11].

In previous studies, wrist-worn devices showed poorer
agreement to reference devices, suggesting that researchers
should consider that not all consumer-level activity monitors
are equal in terms of accuracy, design, and function [12].

Current public health recommendations for adults aged 65 years
and older in general good health (moderate or vigorous intensity
activity) could be seen challenging for many older people, and
the health benefits of light intensity activities have not been
defined even if light activities, including walking, account for
the biggest part of daily activity in older populations [13].

Moreover, results of previous studies have been obtained in
experimental settings and/or comparing device performance
with data provided by reference instruments and in younger
populations; they should be confirmed in other settings and with
other devices [14] in older subjects to be considered for clinical
application in the elderly.

PA research performed with validated but commercially
available smartwatches holds the potential to address this gap
with a more comprehensive assessment of the benefit of the
overall amount of time spent ambulatory daily, and thus help
shape future interventions specifically designed for increasing
daily PA in older adults [13].

The study aimed to assess the feasibility of extending the use
of these devices for monitoring the health of the elderly
population and estimating the accuracy of wearable devices in
quantifying the PA of elderly people on a larger sample of 49
subjects in a setting similar to a real-life condition excluding
only individuals with a diagnosis of atrial fibrillation and current
anticoagulant treatment.

Methods

Study Design
In this study, a commercially available smartwatch has been
compared with direct observation of step counts, a metric
successfully used in interventions to improve clinical outcomes
[15] in a real-life, noninterventional, controlled setting (a walk
at own pace in a daily attended location).

Aiming to perform a study that could be considered a starting
point to extend the use of these devices for monitoring the health
of the elderly population, a more protected experimental setting
was chosen; however, the study setting was not fully controlled
but resembled a real-life context: the proposal for participation
in the study and the execution were immediate and conducted
in a local market, a setting frequented by the participants.
Moreover, the subjects freely walked at their own pace.

The study was conducted in flat areas previously marked with
fixed distances on the ground using a Mini Measuring Wheel
odometer (Group Silverline Ltd) during daily life circumstances

in different cities in northeastern Italy. The path was linear and
previously measured.

Participants met the following criteria: signed the informed
consent form, aged between 70 and 90 years, able to walk safely
and without any walking aid for at least 300 meters, no history
of episodes of falling while walking in the last 12 months, no
current diagnosis of atrial fibrillation, and no current
anticoagulant treatment. Enrollment and the assessment were
performed on the same day.

Participating subjects were asked to walk 150 meters at their
preferred pace to assess the performance of the device at a
natural speed [16]. Subject characteristics such as sex, age,
weight, height, health conditions, and the number of steps on
the path were collected.

Actual steps were monitored and tallied by a researcher using
a hand-tally counter. The hand-tally count has been used as a
criterion measure for manually measuring steps [17].

Study Device
In this study, a vívoactive HR smartwatch (Garmin Ltd) was
programmed with participant sex, age, weight, and height and
fitted on the left wrist according to the user manual. The device
was designed for monitoring physical activity, especially
outdoors, and has been validated in a real-life setting in other
studies on the adult population [18]. The device tested in this
study can also provide raw data regarding heart rate, number
of steps, sleep quality, and activity (walking) session duration.
In the literature, it has been demonstrated that the vívoactive
HR was more accurate at reflecting step count across a broader
range of walking cadences than other devices [19] also
considering different age groups and during various walking
conditions, even during slow walking [20].

The vívoactive HR is one of the few devices compliant with
the new technological standards for physical activity monitors
[21]. This device allows a detailed download of the raw data
relating to each walking or training session, which allows
accurate tracking of the physical activity of the elderly subject
for health monitoring purposes. The activity monitor was started
simultaneously with the start of the test. This time point was
also recorded on the case report form by a different researcher
to allow identification of the start point of the measurement
[22]. After testing was completed, data were downloaded onto
a personal computer via USB drive for postprocessing and
analysis.

Sample Size
The sample size computation was performed using the method
proposed by Bonett [23] for estimating intraclass correlation
coefficients (ICCs). Two different step counting methods (a
gold standard manual evaluation and wearable device counting)
were considered to tailor the study design [24]. An ICC value
of .80 was used as the expected agreement for the sample size
computation, as indicated in the literature for other studies
evaluating the agreement between device step counting and the
manual counting gold standard [25]. A sample size of 49
subjects was considered sufficient to estimate the expected ICC
with a precision of 0.10 based on a 95% confidence interval.

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 5 | e20966 | p. 3https://mhealth.jmir.org/2021/5/e20966
(page number not for citation purposes)

Martinato et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Statistical Analysis
Descriptive statistics were reported as medians and interquartile
ranges for continuous variables and counts and percentages for
categorical variables. The Wilcoxon Kruskal-Wallis test was
performed for continuous variables, and the Pearson chi-square
test was performed for categorical variables.

A Bland-Altman plot was used to analyze the difference between
manually counted steps and wearable device–measured steps.
The ICC was also computed (with a 95% confidence interval)
between the step measurements.

Generalized linear mixed-model (GLMM) ICCs were also
estimated, providing a random effect term (random intercept)
for the individual measurements (gold standard and device).
Both adjusted and conditional ICCs [26] were computed for the
GLMM models considering separately the effects of age, sex,
BMI, obesity (BMI >30), and session duration in minutes.

The adjusted ICC only considers the random effects in the
computation, while the conditional ICC also takes the fixed
effects variances into account and evaluates how much the
covariate variable explains the portion of the variability in the
grouping structure (random intercept).

The likelihood ratio test (LRT) was performed comparing the
goodness of fit of the separate covariate-adjusted models with
that of the intercept model (null model).

The covariates indicating significant goodness-of-fit
improvement (ie, a significant covariate effect on the agreement

between measures) in comparison with the null model were
selected to perform a generalized linear model (GLM) on the
number of misclassified steps (ie, the absolute value of the
difference between the gold standard and device measurement).
The negative binomial parametrization was considered to adjust
the model estimates for overdispersion. The dispersion test was
also performed as indicated in the literature [27]. The model fit
was evaluated by reporting the residual Q-Q plots. Analyses
were performed using R (R Foundation for Statistical
Computing) [28] with the rms package [29].

Results

A total of 23 females and 26 males were enrolled in the study.
The median age of the participants was 75 years (Table 1). A
considerable proportion of participants included in the sample
were obese (33/49, 67%), and the majority (20/33, 61%) were
male. The step counts for both measurement criteria were greater
for female participants than for male. Many older people could
not participate due to walking problems or because they used
walking aids. Many people approached said they did not have
time to listen to information on the study, and this affected
recruitment. The relatively younger subjects were found to be
more willing to receive information on the study than older
people. On the other hand, study participation was very high:
in 50 people selected after checking the inclusion and exclusion
criteria, only one refused to participate in the study.

Table 1. Descriptive table of patient characteristics and step counts according to sexa.

P valueCombined (n=49)Males (n=26)Females (n=23)Characteristic

Patient demographic data

.1674.00 (71.00-77.00)72.00 (71.00-76.75)75.00 (73.00-79.00)Age in years, median (IQRb)

<.00175.00 (68.00-85.00)81.00 (75.00-90.00)68.00 (62.50-76.50)Weight (kg), median (IQR)

<.0011.69 (1.62-1.73)1.72 (1.70-1.77)1.62 (1.58-1.66)Height (m), median (IQR)

.2026.99 (24.22-29.36)27.21 (25.51-29.40)25.00 (23.10-28.99)BMI, median (IQR)

.00633 (67)22 (85)11 (48)Obese (BMI >30), n (%)

Step counts

.001217.0 (208.0-233.0)211.0 (197.2-221.8)232.0 (214.5-243.5)Gold standard, median (IQR)

.002219.0 (208.0-236.0)212.5 (195.5-221.0)233.0 (216.0-247.0)Device, median (IQR)

.161.967 (1.867-2.167)1.950 (1.850-2.062)2.000 (1.900-2.225)Session duration (min), median (IQR)

aThe Wilcoxon Kruskal-Wallis test was performed for continuous variables, and the Pearson chi-square test was performed for categorical variables.
bIQR: interquartile range.

The Bland-Altman plot (Figure 1) reveals that, except for one
observation, all the differences across measurements were in
the confidence bounds, demonstrating substantial agreement
between the step count measurements. Other research has been
performed to validate wearable devices (Fitbit) on elderly
subjects using the manual step count as the gold standard.
Following this evidence, a clinically relevant lower limit of the

agreement is –20 steps and an upper limit is 18 steps [30]. These
limits have been represented in the Bland-Altman plot. All
points lie within these boundaries indicating also that the range
between the limits of agreement is narrow enough to represent
nonclinically significant variation in the outcome. Results were
also confirmed by an ICC equal to .98 (.96-.99), demonstrating
excellent agreement between the two sets of measurements [25].
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Figure 1. Bland-Altman plot of the difference between the gold standard daily steps and the wearable device measured daily steps (intraclass correlation
coefficient .98, 95% CI 0.96-0.99). The red line indicates the mean difference (–0.4). The dotted lines indicate the Bland limit of agreement 1.96=*SD.
The dark grey lines indicate a reasonable limit of agreement (-20; 18) as indicated in a study conducted to validate a Fitbit wearable device on an elderly
population [31].

The GLMM conditional agreement analysis revealed that the
ICC values, after controlling for the predictors, were different
after adjusting for age and sex (Table 2). The LRT test revealed

that age and sex were the covariates indicating significant
improvement in model fit in comparison with the null model.

Table 2. Generalized linear mixed-model intraclass correlation coefficients (ICCs) have been estimated, providing a random effect term (random
intercept) for individual measurements (gold standard and device). The adjusted ICC considers only the random effects, while the conditional ICC also
takes the fixed-effect variances into account when evaluating how much the covariate variable explains the portion of the variation in the grouping
structure (random intercept). The P value and chi-square test statistics are reported for the likelihood ratio test comparing the goodness of fit of the
separate covariate-adjusted models with the intercept-only model (null model).

P value (LRT)Chi-square LRTbConditional ICCAdjusted ICCaModel

———c.98Null model

<.00112.77.98Age in years

<.00111.77.77.98Sex

.063.55.91.98BMI

.171.88.94.98Obesity

.900.002.98.98Walking session duration

aICC: intraclass correlation coefficient.
bLRT: likelihood ratio test.
cNot applicable.

Considering the aforementioned results, sex and age were
included as covariates to model the number of misclassified
steps. A GLM with a negative binomial parametrization was
considered for the estimation. This approach led to the
adjustment of the estimates for the overdispersion component
(ϕ). The dispersion test revealed that ϕ was equal to 2.11 and

was significantly (P<.001) greater than 1 (ϕ = 1 indicates the
absence of overdispersion in the data).

The multivariable negative binomial estimate reveals a
nonsignificant age and sex effect on the number of misclassified
steps (Figure 2). The residuals Q-Q plot indicates a good model
fit performance for the negative binomial parametrizations
(Figure 3).
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Figure 2. Negative binomial model on the number of wearable device misclassified steps in comparison with the gold standard. The model predictions
for the number of misclassified steps, according to sex and age, are reported in the plots. The model estimates, misclassification rate ratio with standard
errors SE, and P values are reported in the tables. A .94 misclassification rate ratio indicates a 6% reduction in the misclassification rate (over the total
number of steps) for a 1-year age increase. The overdispersion estimate is 2.12 (P<.001).

Figure 3. Residual Q-Q plots for the negative binomial models with 95% confidence bounds represented.
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Discussion

Principal Findings
The purpose of the study was to determine the level of accuracy
of a wearable nonmedical device that is widely available in
nonspecialized stores in measuring PA in elderly individuals in
a real-life setting. Collected data show that a wrist-wearable
device is a reliable tool for measuring the level of PA in an
elderly population in the context of daily life.

Given its potential and level of accuracy, a wearable device
could be used by health care professionals to monitor the levels
of PA in their patients. The application of these devices could
be easily adopted in situations where there is a need to perform
PA for the maintenance or improvement of patient health—for
example, following orthopedic or major surgery or to achieve
a beneficial increase in metabolism such as in the presence of
diabetes or obesity [31-33]. Since these devices are
commercially available, inexpensive, specific, and reliable, they
could be used in today’s health care environment, where the
use of technological tools and adoption of telemedicine methods
is becoming increasingly widespread. Wearable devices in health
care are seen by older adults as a possible way to improve their
health [5]. Indeed, they wish that devices were available in
pharmacies, that they could learn about the devices from a health
care professional, similar to other health monitoring systems
(eg, blood pressure and blood glucose meters), and that health
care professionals would use device-collected data.

Activity trackers are not taxed if prescribed in Canada [34], and
in 2016 [5], a medical-grade exercise prescription device was
recognized as a class 1 medical device. In the United States, a
fitness tracker device is eligible for reimbursement when used
to treat a medical condition such as obesity [35].

Are future challenges for wearable devices related to
reimbursement by health care systems? Current research
pipelines aim to collect data to validate their medical relevance
to benchmark them against existing clinical solutions, reducing
accuracy and reliability issues. Medically relevant clinical data
should promote the integration of wearable devices into medical
technologies, allowing a rethinking of cost covering by insurance
companies and health care systems for clearly defined patient
categories. Some examples of wearable systems are starting to
be considered eligible for reimbursement [5]. The technology
is advancing rapidly, and the market for wearable technology
will expand significantly. Despite potential restraints and
barriers, such data could cause a dramatic shift in the future of

the life and health insurance industry. The evolution of wearable
technology in health care is expected to revolutionize the health
insurance industry, according to a new report from Timetric’s
Insurance Intelligence Center [36].

From a clinical perspective, it may be an important tool for
studying the complete 24-hour activity cycle. A wearable device
such as the one used in this study could also be easily adopted
to measure 24-hour activity in elderly subjects for
self-monitoring of spontaneous PA and/or sedentary behavior
to prevent weight gain/regain in older adults and for
self-monitoring of the effects of PA on self-efficacy and
behavior in people with type 2 diabetes. Wearable devices could
also allow closer PA monitoring of elderly individuals by both
formal and informal caregivers, providing high efficiency for
reacting to changes in behaviors.

Limitations
Study participants were aged 70 to 90 years, with median age
being 75 years, a relatively young population considering actual
life expectation. Data from this study should be applied with
caution in older people. Subjects were selected excluding those
needing any walking aid or with any walking disabilities; these
study data cannot provide information regarding accuracy in
assessing PA in subjects needing those aids or with walking
disabilities. Moreover, further research developments are needed
for extensive validation in real-life conditions. However, this
study could represent a starting point for extending the use of
these devices in elderly people, not only for clinical reasons but
also for the health monitoring of a population that would benefit
greatly from practicing a constant PA.

Conclusions
Results provided by this study could be considered a good
starting point to plan further research considering the collection
of different variables and more extensive observations. The
device used in this study has the potential to capture the low
levels of PA commonly performed by older adults which can
be difficult to capture, including activities of daily living, but
vital for maintaining health, independence, and quality of life
with aging.

Final Remarks
The level of accuracy of wearable devices in quantifying the
PA of older people in a real-life setting that was found in this
study supports the idea of considering wrist-wearable
nonmedical devices widely available in nonspecialized stores
as reliable tools.
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