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Abstract: The COVID-19 outbreak involved a spread of prediction efforts, especially in the early
pandemic phase. A better understanding of the epidemiological implications of the different models
seems crucial for tailoring prevention policies. This study aims to explore the concordance and
discrepancies in outbreak prediction produced by models implemented and used in the first wave
of the epidemic. To evaluate the performance of the model, an analysis was carried out on Italian
pandemic data from February 24, 2020. The epidemic models were fitted to data collected at 20, 30,
40, 50, 60, 70, 80, 90, and 98 days (the entire time series). At each time step, we made predictions until
May 31, 2020. The Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE)
were calculated. The GAM model is the most suitable parameterization for predicting the number of
new cases; exponential or Poisson models help predict the cumulative number of cases. When the
goal is to predict the epidemic peak, GAM, ARIMA, or Bayesian models are preferable. However,
the prediction of the pandemic peak could be made carefully during the early stages of the epidemic
because the forecast is affected by high uncertainty and may very likely produce the wrong results.

Keywords: COVID-19; prediction model; early phase; epidemic models; prevention policy

1. Introduction

COVID-19 is a global-scale pandemic infectious disease caused by the SARS-CoV-2
virus, which emerged in November 2019 in Wuhan (Hubei), China. On January 29, 2020,
the first two cases were registered in Italy. On January 1, 2022, the official Italian statistics
on COVID-19 declared 6,266,939 confirmed cases and 137,513 deaths [1].

Since the early stages of the outbreak, modeling the epidemic growth pattern has
been considered crucial for understanding the evolution of the contagion. This research
compares the efficacy of different modeling approaches during the early, uncertain phase of
the pandemic, shedding light on factors that drive accurate predictions and discrepancies.

Forecasting the outbreak peak and estimating the number of R0 disease reproductions
was crucial to guiding the implementation of prevention and control measures [2]. Several
predictive and forecasting models have been proposed in the literature, especially during
the early phases of the pandemic’s evolution, by different organizations, such as research
institutes, academic organizations, and consulting companies [3]. These models have been
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developed with the primary objective of supporting health systems in the formulation of
appropriate prevention or containment policies [4].

Among the proposed models, the most traditional infectious disease prediction tools
include differential equations and time series. Differential equation models reflect the
dynamics of infectious diseases by describing the relationship between the rate of change
at fixed times and the number of individuals in different compartments of the population.
Currently, the most widely applied compartmental models are the Susceptible-Infected-
Recovered (SIR) model, proposed by Kermak and McKendrick in 1927 [5], the Susceptible-
Infected-Recovered-Death (SIRD) model, and the Susceptible-Exposed-Infected-Recovered
(SEIR) model. These models were widely applied to predict the evolution of the outbreak
of many epidemics, such as Ebola or SARS, showing good prediction performance [2,6,7].
However, compartmental models are strongly parameter-dependent and can be extremely
sensitive to small changes in assumed scenarios [8]. Furthermore, in several cases, they
ignore variations in transmission parameters in the different stages of epidemics, even if
recent developments have introduced a time-dependent parameterization [9,10]. During
the early phases, the suboptimal availability of data, the rapid evolution of the pandemic,
and the unprecedented control measures adopted made their use to predict the COVID-19
outbreak challenging. More complex compartmental models such as SEIR, which are more
biologically realistic and embed more epidemiological information, require more parame-
ters to be estimated and therefore lead to a higher degree of uncertainty in prediction [11].

Compared to compartmental models based on epidemiological assumptions and
equations, there are phenomenological models, which are data-driven and try to fit a trend
and predict the outbreak unfolding from it. Data-driven models have the advantage of
allowing simple calibrations of the empirical data collected. Among data-driven models,
the most popular are the exponential model, the logistic growth model, the generalized
logistic growth model, and the Poisson model, which have been widely applied to describe
other epidemics and the COVID-19 outbreak [12–18]. However, these models have several
limitations, and they are only applicable when enough data points are available [15].

In some studies [19–21], the epidemiological trend of prevalence and incidence of
the COVID-19 outbreak is estimated through the ARIMA model, which is composed of
the autoregressive (AR), integrated (I), and moving average (MA) models. Time series
prediction models are based on random processes and predict the path of infectious dis-
ease by analyzing one-dimensional time series of data [12]. However, ARIMA modeling
requires a stationary sequence of data, and this is not the case for the COVID-19 time series,
consequently requiring a difference or logarithmic transformation of the data sequence.
Furthermore, ARIMA models lack accuracy and are not used in the very early stages of
the epidemic, as they can provide useful results only when at least 16–20 data points are
available [22,23]. Other authors [24,25] applied a more advanced Bayesian methodology,
taking advantage of previous information on the evolution of COVID-19 obtained from
other nations. This technique could be used due to the comparable disease trajectories
between countries in terms of internal timing, even if COVID-19 has spread to different
countries at different times. With this approach, even in the early stages of the epidemic,
when only a few data points are available, it is possible to obtain good prediction esti-
mates. Finally, machine learning (ML) models such as long-short-term memory (LSTM) or
modified autoencoder (MAE) were also applied in some studies [26,27], using SARS data
for training. However, ML techniques are most effective when a large amount of data is
available, and this is usually not the case in the early stages of an outbreak. Furthermore,
ML methods are often ‘black boxes,’ which are not inherently interpretable models.

In general, at the early stage of the epidemic, the predictive models for COVID-19 were
affected by the rapid evolution of the outbreak, with new data rapidly accruing that made
the prediction highly uncertain and changing as new data became available. However,
statistical models are meaningful tools that offer crucial insights to policymakers. In this
general framework, it is important to characterize the strengths and weaknesses of the
epidemic predictive tools as supporting instruments for the planning of the COVID-19
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prevention policy [28]. A better understanding of the epidemiological implications of the
different statistical approaches seems crucial, as government interventions and control
measures in all sectors strongly depend on the prediction of the outbreak [28]. The first
wave of the COVID-19 pandemic represents a critical period in the early stages of the
pandemic when there was a rapid increase in the number of cases and deaths globally. This
period was characterized by many attempts to predict the future trajectory of the pandemic
and its potential impact on healthcare systems and economies, despite the limited data and
understanding available at the time.

This study aims to explore the concordance and discrepancies of the outbreak predic-
tions provided by considering the most commonly used models considered in the literature
to perform predictions during the early stages of the pandemic. By focusing on the first
wave of the pandemic, it is possible to capture the range of modeling approaches that were
developed and applied during this critical period, providing a comprehensive picture of the
state-of-the-art modeling approaches used to predict the spread and impact of the virus [29].
Some efforts have been made in the literature to characterize the epidemic’s evolution,
especially during the first stages of the pandemic, especially in China. In a particular
example, Wen and colleagues [30] delve into heterogeneous epidemic modeling within
enclosed spaces. Their Bayesian estimation approach offers nuanced insights into the pro-
gression of diseases in spatially confined settings. While their context is more specific, their
methodological rigor provides valuable guidance for predictive tools, especially in regions
with high population densities. Moreover, Lin and colleagues [31] present a conceptual
model focused on the initial outbreak in Wuhan. Their emphasis on individual reactions
and governmental actions aligns with our approach of considering non-pharmaceutical
interventions and public response as critical predictive variables. Their findings on Wuhan,
the epicenter of the outbreak, offer useful insights into the early stages of the pandemic.

However, to our knowledge, this research represents a first effort to provide insights
into the strengths and weaknesses of different modeling approaches in the face of an
emerging, rapidly evolving, and uncertain situation. The study can help identify the factors
that contribute to accurate predictions and those that lead to discrepancies. The Italian
scenario has been considered for this research because this country played a pivotal role
during the early stages of the COVID-19 pandemic, providing researchers, policymakers,
and the global community with essential insights into the virus’s spread, impact, and
potential mitigation strategies. The epidemic situation during the early stages of the
pandemic, combined with the richness of Italian data and the varied policy responses
across its regions [32], made Italy an ideal choice for a comprehensive comparison of
COVID-19 predictive models [33]. Italy was the first European country to be severely
impacted by COVID-19; the rapid surge in cases and the mortality excess in 2020, directly
and indirectly, related to the virus [34], served as an early indication of the potential scale
and severity of the pandemic in the Western world [13]. Moreover, the Italian health
authorities provided regular, detailed updates, making it a valuable dataset for predictive
modeling during the early stages of the pandemic [35].

Such a study could be particularly useful for informing future modeling efforts and
improving our ability to predict the spread and impact of emerging infectious diseases. It
could also help policymakers and public health experts better understand the limitations
of modeling approaches and the importance of incorporating new data and knowledge as
it becomes available.

To achieve this objective, we applied compartmental and data-driven models to
forecast the number of COVID-19 infections in Italy as they evolved during the first wave
and compared their predictions.

2. Materials and Methods

2.1. Data

Models were implemented based on the total number of confirmed cases reported
by the Italian Civil Protection Department [1], which is a cumulative number, and the
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number of new daily positive cases (i.e., the difference between two consecutive days of
confirmed cases).

The analysis was limited to the first three months of the epidemic, from 24 February
to 31 May 2020. Epidemic models were fitted at 20, 30, 40, 50, 60, 70, 80, 90, and 98 days
(the entire time series), and at each time step, forecasts were made until day 98 (31 May
2020) to have predictions on timescales ranging from two months to one week.

Data used for analysis are available on the COVID19ita platform [36], which is a
web-based tool that reports and describes statistics developed on official sources of Italian
Civil Protection pandemic data (https://github.com/pcm-dpc/COVID-19 (accessed on
1 June 2023).

2.2. Epidemic Models

We identified statistical models widely applied for predictions during the first epi-
demic wave of COVID-19 around the world. The statistical approaches selected along with
the corresponding reference(s) are summarized in Table 1.

Table 1. Models considered in the analysis and the corresponding reference(s) of the paper(s) in
which each model was applied to COVID-19 data worldwide.

Model Reference(s)

SIR Nesteruk 2020 [37]

Nesteruk et al. predicted the numbers of infected,
susceptible, and removed persons versus time. They
applied a SIR model to predict the characteristics of
the epidemic caused by SARS-CoV-2 in
mainland China.

SIRD Fanelli and Piazza 2020 [38]

Fanelli et al. analyzed the temporal dynamics of the
coronavirus disease 2019 outbreak in China, Italy,
and France in the time window of 22 January–15
March 2020, via a SIRD model to provide officials
with realistic estimates for the time and magnitude
of the epidemic peak.

Exponential Remuzzi and Remuzzi 2020 [13]

Remuzzi et al. observed that in Italy, the number of
patients infected since 21 February 2020 closely
follows an exponential trend. Assuming the absence
of contrast policies and, therefore, if the initial trend
remains unchanged, the authors used the data
observed up to March 8 to predict the trend of the
epidemic curve in the following weeks.

Quadratic Regression
https://www.pangeadds.eu/demos/
CoVid19/ (accessed on 1 June 2023) [39]

In [39], the authors applied to the Italian data up to
16 March 2020 a generalization of the exponential
model, in which the rate of growth may decrease (or
increase) linearly over time. Furthermore, this model
is also an approximation for the logistic trend in the
proximity of the non-exponential regime.

Logistic regression, Generalized
logistic regression, and Richards

Vattay 2020 [14]
Wu et al. 2020 [15]

In [14,15], the authors applied logistic regression
models to monitor the effectiveness of measures
taken by governments in the early phase of the
epidemic in Italy and China, respectively, that were
able to break the initial exponential trend.
Wu et al. [15], using the Chinese experience up to
10 March, analyzed the calibration results also for
Japan, South Korea, Iran, Italy, and Europe to make
future scenario projections based on the results from
different models. In Wu [15], logistic regression,
generalized logistic regression, and Richards
regression were applied.

https://github.com/pcm-dpc/COVID-19
https://www.pangeadds.eu/demos/CoVid19/
https://www.pangeadds.eu/demos/CoVid19/
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Table 1. Cont.

Model Reference(s)

Bertalanffy and Gompertz Jia 2019 [12]

In [12], the authors adopted three kinds of
mathematical models, i.e., the logistic model, the
Bertalanffy model, and the Gompertz model, to
analyze the situation of COVID-19 in China. First,
the authors used 2003 SARS data to verify the three
models to predict the trend of the epidemic, and
then they used the three models to fit and analyze
the epidemic trend of COVID-19 in Wuhan and
non-Hubei areas in China. They predicted the total
number of people expected to be infected, the total
death toll, and the end time of the epidemic.

Generalized additive
model (GAM)

Izadi and Farzali (2020) [40]
In [40], the authors applied a GAM model to capture
the trend of the death rate and predict the
occurrence of the peak in Canada.

Poisson generalized linear Bonetti 2020 [17]

In [17], Bonetti developed a Poisson generalized
linear model with a logarithmic link function and
polynomial regression on time to report day-by-day
estimates of the growth rate of the Italian
infected subjects.

ARIMA Benvenuto et al. 2020 [19]

In [19], the authors proposed the ARIMA model, a
simple econometric approach, to predict the trend of
the prevalence and incidence of COVID-19. The
authors used data up to February 10, extracted from
an online interactive dashboard hosted by the Center
for Systems Science and Engineering (CSSE) at Johns
Hopkins University, Baltimore, USA, created to
illustrate the number of confirmed COVID-19 cases,
deaths, and recoveries for all affected countries [41].

Empirical Bayesian time series Liu and Guo 2020 [25]

In [25], Liu and Guo proposed an empirical Bayesian
time series framework to predict US cases using data
from different countries as a prior reference, using
the Johns Hopkins University CSSE data [41]. More
in detail, Liu and Guo used the idea of internal time,
i.e., the virus spread to different countries at
different times, with trajectories different in calendar
time but similar in internal time.

2.3. Compartmental Models

The compartmental SIR and SIRD models are mathematical models used to study
the spread of infectious diseases in a population. The models assume that individuals
can be classified into different compartments based on their disease status and that the
transitions between compartments can be described using differential equations. These
models can provide valuable insights into the dynamics of an outbreak and inform public
health policies and resource allocation.

A SIR model, for example, allocates each person in the population to one of the
following compartments: susceptible, infected, or recovered; the SIRD model instead
considers the deceased. According to the model, individuals can flow between different
compartments. The flows and interaction rates between compartments are known as the
“model parameters” [42]. Prior assumptions on these parameters are necessary to model
the epidemic growth trend [43].

As the transmission rate, recovery rate, and death rate in Italy during the first wave of
the pandemic were still highly debated, the parameters for these models were estimated
directly from the data using a nonlinear minimization procedure [44]. In the model imple-
mentation, we allowed for the parameters to change over time to account for variations in



Healthcare 2023, 11, 2363 6 of 19

the epidemic dynamic (e.g., a different transmission rate before and after the implementa-
tion of physical distancing and control measures). Other details concerning the models are
reported in the Supplementary Materials.

2.4. Data-Driven Models

Data-driven models are attractive, especially with the little information available on
the evolution pattern of the pandemic, because they do not assume preliminary knowledge
of the mechanism of transmission of the disease [45]. In the first wave of the epidemic, the
models employed were: (i) exponential models; (ii) quadratic regression models; (iii) lo-
gistic regression, generalized logistic regression, and Richards regressions; (iv) Bertalanffy
and Gompertz models; (v) generalized additive models (GAM); (vi) Poisson generalized
linear model (GLM); (vii) ARIMA-class models; and (viii) empirical Bayesian time series
class models.

2.5. Model Evaluation

The goodness of fit of the estimated models was evaluated using the mean absolute
error (MAE), computed as:

MAE =
∑

n
t=1 (yt − ŷt)

n

where yt is the observed value on a tth day and ŷt is the predicted value for the same day.
The lower the coefficient, the more accurate the prediction will be [12].

This provides an average of the absolute differences between the forecasted and actual
values. It gives a linear penalty for forecasting errors.

The mean absolute percentage error (MAPE) [46] was also estimated. MAPE is a
measure of prediction accuracy and is defined by the following formula:

MAPE =
1
n

n

∑
t=1

yt − ŷt

yt

This metric provides an understanding of the error in percentage terms, making it
more interpretable, especially when comparing across different scales.

While MAE provides a linear penalty, it might not adequately penalize large errors,
especially when the magnitude of the data values varies significantly [47]. The MAPE
metric, instead, has limitations, especially when actual values are close to zero; this issue
can lead to very large percentage errors. It is also sensitive to outliers and can sometimes
provide an overoptimistic view of the model’s performance [47]. No single metric can
capture the comprehensive performance of a model; for this reason, this research used a
combination of MAE and MAPE.

The MAE is the most widely used measure of forecast error in time series analysis [48].
MAE is reported as an alternative measure to MAPE. The MAPE is usually chosen over the
classical R2 because it does not depend on the unit of measurement and represents an error
metric defined in percentage values. Furthermore, for interpretability reasons, it is often
referred to as quantifying the error in percentage rather than in quadratic terms [47]. All
statistical analyses were performed with R version 3.6.1 [49].

3. Results

The MAE of the models is reported in the Supplementary Materials, along with the
MAPE prediction accuracy measure reported in Tables S2 and S3 in the Supplementary
Materials. The prediction precision is computed based on the forecast of the number of
cases until 31 May 2020.
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3.1. Total Cases Fit

The compartmental SEIR and SIRD models misspecified the total number of cases
during the overall forecast window, especially considering the estimate of the first 30 days
of the pandemic (Figure 1).

The MAE estimate is greater than 40,000, considering several time windows for the es-
timation, especially for the SIR model (Supplementary Materials Table S2). The Poisson and
exponential models exhibit particularly high absolute error values (MAE) on average. The
estimates of the exponential model, in particular, are out of control for the entire epidemic
period considered. The return estimates of the quadratic model are less biased in terms of
MAE and MAPE on the 90th day of the epidemic (Supplementary Materials Table S2).

Regarding logistic-derived models (i.e., Gompertz, Generalized Logistic, Bertan-
laffy, Richards), in the first 20 days, Bertanlaffy’s model performs better than the others
(MAE < 10). In the course of the pandemic period, the performances of all these models
remained similar (the MAPE is reported in Supplementary Materials, Table S2).

Models based on smoothing functions performed very well on observed data in both
frequentist (GAM) and Bayesian settings (Figure 1). MAE and MAPE are particularly
contained for these parametrizations on the 70th day of the epidemic.

The time-series ARIMA models perform better than the polynomial models (Figure 1),
with lower observed MAE and MAPE until day 70. Furthermore, considering the last
20 days of the epidemic, a Bayesian estimation approach minimizes both MAE and MAPE
compared to the other methods (Supplementary Materials Table S2).

3.2. New Cases Fit

The compartmental SEIR and SIRD models overestimated the number of new cases,
especially during the first 20 days of the epidemic (Figure 2). However, the MAPE estimate
remains lower than one during all periods considered for both compartmental models
(Supplementary Materials Table S3).

Moreover, in this context, for the classical Poisson and exponential models, particularly
high absolute error values (MAE) on average have been observed. The estimates of these
models are still completely biased for the whole epidemic period considered. The quadratic
model return estimates are less biased in terms of MAE and MAPE in comparison with
the other classical Poisson and exponential models (Supplementary Materials Table S3).
The performances of logistic-derived models remain similar to each other throughout the
period considered. However, during the last 20 days, the MAPE achieved values greater
than one, indicating a possible lack of fit for these models after reaching the pandemic peak.
This pattern has been observed, especially using the Logistic, Gompertz, and Richards
models (Supplementary Materials Table S3). Regarding the total case fit, models based on
smoothing functions performed very well on observed data in both a frequentist (GAM)
and Bayesian setting (Figure 2), with both MAE and MAPE particularly contained during all
considered periods. For time-series ARIMA models, MAE and MAPE have been reported to
be less than one during all the considered time frames, suggesting good model performance.
Once again, a Bayesian approach minimizes both MAE and MAPE compared to the other
methods considered for this analysis in the last 20 days (Supplementary Materials Table S3).
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Figure 1. Cont.
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Figure 1. Several models were fitted using the time series of the number of total cases on the first 20, 30, 40, 50, 60, 70, 80, 90, and 98 days from the beginning of the
epidemics (February 24, 2020). The model indicated with fitted 98 is the fit for the whole time series from February 24 to May 31. Each model was used to predict the
total number of total cases up to the 98th day (May 31, 2020).
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Figure 2. Cont.
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Figure 2. Epidemic models were fitted using the number of new daily cases reported on the first 20, 30, 40, 50, 60, 70, 80, 90, and 98 days of the epidemics. The
models were used to predict the number of new daily cases of COVID-19 up to May 31. The model indicated with fitted 98 is the fit for the whole time series from
February 24 to May 31.
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4. Discussion

Modeling the epidemic growth pattern is essential to predicting the evolution of the
pandemic, which is a fundamental issue for the implementation of control and prevention
measures [2]. Predictive models allow an early evaluation of the behavior of the pandemic
by estimating its trend, peaks, and decline in new cases (incidence) [50]. This information
is useful to forecast the demand for acute medical services, determine the timeframes
for containment measures, and plan the need for healthcare providers and the resources
for prevention and treatment, such as personal protective equipment (PPE), ventilators,
etc. [51] and the proper allocation of human resources in emergency settings [52].

Several models have been extensively applied to predict the growth pattern of the
COVID-19 epidemic; however, as we pointed out in this study, different approaches lead to
dissimilar results [53]. Consequently, it is necessary to better understand the implications
of these different approaches and to determine which model could be more appropriate at
a specific stage of the epidemic, considering the epidemiological purposes of the analyses.

Compartmental models have been extensively used for different infectious diseases,
for example, measles, dengue fever, influenza, HIV, the 2002 SARS epidemic, and the Ebola
disease [54,55]. These models are strongly parameter-dependent, and their purpose is to
outline the general behaviors of the epidemic series while predicting several variables
at the same time. One of the advantages of these approaches is that they are not very
demanding in terms of the number of input parameters to be implemented; however, some
basic knowledge about disease transmission mechanisms should be assumed [56]. For these
reasons, while they can be very reliable when outbreak behaviors are known, they can lead
to misleading or even wrong predictions when not enough information is available [56],
as we observed using compartmental models to predict the unfolding of the pandemic
during its early stages. On the contrary, nowadays, mechanisms of virus transmission
are known; compartmental models are appealing for estimating the long-term effects of
the vaccination campaign, for example, and the transmission mechanisms of new virus
variants [57,58]. Moreover, other parametrizations of the SIR models have recently been
reported in the literature; for example, iterative algorithms for approximating the incidence
variable, which allows for the estimation of the model parameters from the number of
observed cases, have been developed [59]. The SIR model has also recently been related to
a parametric Gompertz distribution for the infected cases [60].

In our analysis, the data-driven models’ GAM, ARIMA, and Bayesian methods re-
vealed the most suitable performance in the prediction of the new confirmed cases of
COVID-19. These approaches are more flexible and allow modeling of the descending
phase of the epidemic trend. A considerably lower MAPE is associated with GAM, ARIMA,
and Bayesian models compared to other approaches. More in detail, the use of GAM [61]
is preferable in the early stages of the pandemic, while ARIMA and Bayesian models
gave better predictions in the final stages, as already reported in the literature [22]. The
precision and ability of time series models to rapidly adapt to disease changes by providing
performant short-term forecasts have also been demonstrated in other recent research on
the COVID-19 pandemic [62].

Among the classical models, the quadratic model has inaccuracies both in the initial
phase, as it may not be able to predict the interruption of the exponential trend, and in the
subsequent one, as a quadratic trend seems to predict an epidemic peak too quickly [39].
In contrast, the exponential family models cannot capture the descending trend after
the peak is reached, giving overestimated predictions. Furthermore, for the forecast of
the cumulative number of confirmed cases of COVID-19, the exponential and Poisson
models can only be applied in the early stages of the epidemic [16]; however, they have a
considerably higher MAPE compared to the other models.

Models of the logistic family (logistic, Gompertz, generalized logistic, and Richards
model) are more suitable for predicting when the plateau of cumulative epidemic growth is
reached. More in detail, the Gompertz model is the best-performing one due to its flexibility
in dealing with an asymmetry in the logistic S-shape, followed by the Richards model.
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These flexible variants of the logistic model have also been applied in other studies on
the first phases of the pandemic in Italy [63,64]. The logistic model and the generalized
logistic model perform well only when enough data points are accumulated, as also
demonstrated elsewhere [65].

The lesson learned from this comparative analysis is the absence of a unique model
that best predicts epidemic patterns. The choice of the most suitable parameterization
depends on the epidemiological objectives of the analysis and the level of knowledge
of the disease and its transmission mechanisms. Certainly, under uncertain conditions,
sensitivity analyses on parameters and assumptions are useful [66]. The accuracy of the
predictions depends on various factors, including the availability and quality of data,
the modeling approach, and the complexity of the pandemic dynamics. In this scenario,
the early stages of the COVID-19 pandemic were characterized by many unknowns and
uncertainties, including limited data on the virus and its transmission mechanisms as well
as the effectiveness of various interventions. As a result, it may have been challenging
to make highly accurate predictions, especially given the limitations of available data
and knowledge at the time [67]. Concerning the quality of the data, in Italy, as in many
countries worldwide, there were concerns about the accuracy of COVID-19 diagnosis,
particularly during the early phases of the pandemic. The initial lack of established testing
protocols and potential shortages in testing kits might have led to both over- and under-
reporting [68]. Over time, however, with increased testing capabilities and improved
diagnostic methodologies, the accuracy of COVID-19 diagnosis likely improved [69].

Moreover, while there were reports in the US about potential financial incentives
skewing hospital classifications of COVID-19 patients [70], the situation in Italy appears
distinct. The Italian healthcare system is predominantly public and centralized, thereby
reducing financial motivations for potential misreporting. However, we cannot entirely rule
out systemic biases or administrative errors that might have influenced reporting. Some
regions in Italy experienced overwhelming pressure on their healthcare system, which
might have inadvertently affected the precision of case recording [13].

To address potential concerns about data integrity, our study utilized data only from
official sources such as the Italian Ministry of Health and the Istituto Superiore di Sanità.
These agencies have been transparent about their methodologies and have continuously
sought to refine their data collection processes as the pandemic unfolded [35].

In the early stages of the epidemic, the purposes of predictive analysis, in general, are
to monitor and forecast disease transmission in the short term and plan healthcare policies
and interventions [71]. While the study focuses on the early stages of the pandemic and the
performance of different prediction models during that period, the findings may still have
some applicability to the later stages of the pandemic. For example, the study highlights the
importance of considering multiple models and their respective strengths and weaknesses
when making predictions during a period of limited data and knowledge. This may still be
relevant in the later stages of the pandemic as new variants emerge and vaccination rates
increase. Regarding applicability to other cities or regions, the findings may be informative
for policymakers and public health officials in other areas facing similar challenges during
the early stages of the pandemic. However, it is important to note that the dynamics of
the pandemic can vary significantly between regions due to differences in demographics,
population density, healthcare systems, and other factors [72]. For this reason, the analyses
and results should be updated as soon as new data are available. In uncertain situations,
phenomenological modeling approaches are particularly suitable when characterizing the
epidemiology of infectious disease in its early phases. These techniques could offer a good
starting point for producing early estimates of disease transmission and for generating
short-term forecasts of epidemic spread.

4.1. Study Limitations

The comparison between models is limited to Italian data on the COVID-19 outbreak
in the first epidemic wave. All the models used have their limitations and are more suitable
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at different stages of the outbreak or when enough data are available. Moreover, many
of them are designed for continuous data despite being applied to count data. However,
the approaches that we compared are usually applied to forecast time series [73] and were
widely used for COVID-19 predictions.

One potential limitation is that by including the entire time series as a learning dataset,
the models may have learned patterns and trends that may not necessarily be representative
of the pandemic dynamics going forward. Additionally, by making predictions for the
entire period, the models may be overfitting the historical data and not capturing new
or emerging trends that could affect future outcomes. However, we included the entire
time series as a learning dataset and made predictions for the entire period based on the
available data and the goals of the study because this procedure was adopted, given the
paucity of data, during the early stages of the pandemic.

One example was a study by the Imperial College COVID-19 Response Team in the
United Kingdom. In this study, the team used a mathematical model to estimate the
potential impact of different interventions on the spread of COVID-19 in the UK [74]. By
including the entire time series as a learning dataset, the model was able to capture the
dynamics of the pandemic in the early stages, when there was limited data and knowledge
about the virus. While this approach may have limitations, it was necessary during the
early stages of the pandemic when there was limited data and knowledge available. As
more data became available and pandemic dynamics evolved, models were able to be
updated and refined to improve their accuracy and usefulness for policymakers. Future
studies may benefit from using different time windows or incorporating additional data
sources to assess the accuracy of pandemic predictions.

4.2. Future Research Developments

Other research developments are needed to better investigate the performance of the
widely used model in other countries by providing a more comprehensive understanding
and collocating our research within a wider landscape, accounting for heterogeneities in
prevention policies and potential biases in data reporting and updating.

5. Conclusions

Data-driven models are useful to model the early stages of the epidemic. The GAM
model is the most suitable for predicting the number of newly confirmed cases; exponential
or Poisson models are useful for predicting the cumulative number of cases. When the
purpose is to predict the epidemic peak, GAM, ARIMA, or Bayesian models are preferable
to detect the number of new cases; meanwhile, Gompertz or Richards are well-performing
models in forecasting when the growth plateau is soon to be reached. However, it is
necessary to be careful with peak predictions during the early stages of the epidemic, as
they will most likely yield the wrong results. Finally, the ARIMA and Bayesian models are
more suitable for the detection of new cases in later stages.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/healthcare11162363/s1. Table S1. Model parameters description.
Table S2. MAE and MAPE for total cases. Table S3. MAE and MAPE for new cases. Table S4. Last
observed vs last fitted total cases at i-th time. Table S5. Last observed vs last fitted new cases at the
i-th time. Refs. [75–89] are cited in Supplementary Materials.
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