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AMPLE BODIES AND TERRACINI LOCI OF PROJECTIVE VARIETIES

ANTONIO LAFACE AND ALEX MASSARENTI

Abstract. We introduce the notion of ample body of a projective variety and use it to prove emptiness
results for Terracini loci and specific identifiability results for toric and homogeneous varieties.
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1. Introduction

Let X ⊂ PN be an irreducible projective variety. The h-Terracini locus of X parametrizes unordered
h-uples of distinct points x1, . . . , xh ∈ X at which the tangent spaces span a linear space of dimension
smaller than expected. Terracini loci have been introduced in [BC21] and then studied for several
relevant varieties such as Veronese and Segre varieties [BBS20], [Bal22b], [Bal22a], [CG23], [BV23].

These loci are closely related to the concepts of secant defectiveness and identifiability. The h-
secant variety Sech(X) ⊂ PN of X is the Zariski closure of the union of the (h− 1)-planes spanned by
collections of h points of X.

The expected dimension of Sech(X) is expdim(Sech(X)) := min{nh+h−1, N}. The actual dimen-
sion of Sech(X) may be smaller than the expected one. The variety X is h-defective if dim(Sech(X)) <
expdim(Sech(X)) and h-identifiable if through a general point of Sech(X) there passes a unique (h−1)-
plane spanned by h points ofX. Furthermore, if this last property holds for a special point p ∈ Sech(X)
we say that p is h-identifiable.

The Terracini’s lemma yields that X is h-defective if and only if the h-Terracini locus of X coincides
with the symmetric product Xh/Sh. In Section 2 we relate the emptiness of certain Terracini loci
to specific identifiability. This property, especially when the ambient projective space parametrized
tensors, is relevant also in applied sciences, for instance in psycho-metrics, chemo-metrics, signal
processing, numerical linear algebra, computer vision, numerical analysis, neuroscience and graph
analysis [BK09].

In Section 3 we associate to a projective variety X a geometric object AX that we call the ample
body of X. This is the convex hull of ample divisor classes of X. When the Mori cone of X is rational
polyhedral AX turns out to be a polyhedron which is the Minkowski sum of a rational polytope AX

and of the nef cone of X. In many case we manage to control the geometry of AX and to use it to
prove emptiness results for Terracini loci. For instance, summing up Proposition 3.4 and Theorem
3.14, for toric varieties we have the following:
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Theorem 1.1. Let P ⊆ MQ be a full dimensional lattice polytope such that the corresponding projective

toric variety XP ⊆ P|P ∩M |−1, embedded by a complete linear system |L|, is smooth, and set

ℓ(P ) := min{|L ∩M | − 1 |L is a 1-dimensional face of P}.

For 2-Terracini loci the following are equivalent:

- ℓ(P ) ≥ 3;

- T2(X) is empty;

- XP does not contain conics.

Furthermore, if AXP
is a normal lattice polytope then the following are equivalent:

- ℓ(P ) = s with s ≥ 2h− 1;

- L ∈ s · AX ;

- Th(X) is empty.

In Section 4 we apply Theorem 1.1 and the theory of ample bodies to specific toric varieties such
as Segre-Veronese varieties, toric varieties of Picard rank two, and to homogeneous varieties. As a
sample we summarize our main results for Segre-Veronese varieties in Corollaries 4.3, 4.4.

Let nnn = (n1, . . . , nr) and ddd = (d1, . . . , dr) be two r-uples of positive integers, with n1 ≤ · · · ≤ nr and

N(nnn,ddd) =
∏r

i=1

(ni+di

ni

)

− 1. The Segre-Veronese variety SV nnn
ddd is the image in PN(nnn,ddd) of Pn1 × · · · ×Pnr

via the embedding induced by OPnnn(d1, . . . , dr) = OP(V ∗

1
)(d1) ⊠ · · · ⊠ OP(V ∗

1
)(dr).

Theorem 1.2. If h ≤ ⌈di

2 ⌉ for all i = 1, . . . , r then Th(SV nnn
ddd ) is empty. Furthermore, if 2h ≤ ⌈di

2 ⌉ for

all i = 1, . . . , r then any point of Sech(SV nnn
ddd ) \ Sech−1(SV nnn

ddd ) is h-identifiable and Sech(SV nnn
ddd ) is smooth

outside of Sech−1(SV nnn
ddd ).

Finally, in Proposition 4.6 we describe 2-Terracini loci of Grassmannians, and in Section 4.7 we
discuss ample bodies of toric Fano varieties and prove the following result:

Theorem 1.3. Let P ⊆ MQ be a full dimensional lattice polytope such that the corresponding projective

toric variety XP ⊆ P|P ∩M |−1, embedded by a complete linear system |L|, is smooth and Fano of

dimension at most four. Then AXP
is a lattice point, and Th(X) is empty if and only if ℓ(P ) = s with

s ≥ 2h− 1.

The proof of Theorem 1.3 is based on our results for toric varieties, the data contained in the
Graded Ring Database, and a Magma [BCP97] script we developed to compute AX .
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ronment, Luca Chiantini and Ciro Ciliberto for introducing us to Terracini loci during the workshop,
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and the Simons Foundation Award No. 663281 granted to the Institute of Mathematics of the Pol-
ish Academy of Sciences for the years 2021-2023. The first author has been partially supported by
Proyecto FONDECYT Regular n. 1230287.

2. Terracini loci, specific identifiability and Bronowski’s conjecture

Let X ⊂ PN be an irreducible and non-degenerate variety of dimension n and let Γh(X) ⊂ X×· · ·×
X × G(h− 1, N), where h ≤ N , be the closure of the graph of the rational map α : X × · · · ×X 99K

G(h−1, N) taking h general points to their linear span. Observe that Γh(X) is irreducible and reduced
of dimension hn. Let π2 : Γh(X) → G(h−1, N) be the natural projection, and Sh(X) := π2(Γh(X)) ⊂
G(h− 1, N). Again Sh(X) is irreducible and reduced of dimension hn. Finally, consider

Ih = {(x,Λ) | x ∈ Λ} ⊂ PN × G(h− 1, N)

http://www.grdb.co.uk/search/toricsmooth
https://agates.mimuw.edu.pl/index.php/agates/geometry-of-secants
https://www.impan.pl/en
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with the projections πX
h and ψX

h onto the factors. The abstract h-secant variety is the irreducible
variety

Sech(X) := (ψX
h )−1(Sh(X)) ⊂ Ih.

The h-secant variety is defined as

Sech(X) := πX
h (Sech(X)) ⊂ PN .

It immediately follows that Sech(X) is an (hn+h−1)-dimensional variety with a Ph−1-bundle structure
over Sh(X). We say that X is h-defective if dim Sech(X) < min{dim Sech(X), N}. We will denote by
Sech(X)o the union of the (h− 1)-planes spanned by h linearly independent points of X.

Definition 2.1. When πX
h : Sech(X) → Sech(X) is generically finite we will call its degree the h-secant

degree of X, and we will say that X is h-identifiable when its h-secant degree is one.

Remark 2.2. Note that even when πX
h : Sech(X) → Sech(X) is birational it might have positive

dimensional fibers or zero dimensional fibers of degree bigger than one. In this last case Sech(X) will
not be normal. We will say that p ∈ Sech(X) is h-identifiable if (πX

h )−1(p) has degree one.

Definition 2.3. Let X ⊂ PN be a smooth, irreducible and non-degenerate variety of dimension n.
The h-th Terracini locus Th(X) of X is the closure of

Th(X)o = {{x1, . . . , xh} | xi 6= xj and dim(〈Tx1
X, . . . , Txh

X〉) < min{hn+ h− 1, N}} ⊆ Xh/Sh

in the h-th symmetric product Xh/Sh of X.

Definition 2.4. Given a smooth, irreducible and non-degenerate variety X ⊂ PN of dimension n and
a local parametrization

φ : kn −→ X ⊂ PN

(u1, . . . , un) 7→ [1, φ1(u1, . . . , un), . . . , φN (u1, . . . , un)]

we define the Terracini matrix TX(x1, . . . , xh) of the h points x1, . . . , xh ∈ φ(kn) as

TX(x1, . . . , xh) =























1 φ1(p1) . . . φN (p1)
...

...
. . .

...
1 φ1(ph) . . . φN (ph)
0 φ1,u1

(p1) . . . φN,u1
(p1)

...
...

. . .
...

0 φ1,un(ph) . . . φN,un(ph)























where pi = φ−1(xi) and φi,uj
= ∂φi

∂uj
.

In the following we relate the emptiness of Terracini loci to specific identifiability.

Proposition 2.5. If Th(X) is empty then for any p ∈ Sech(X)o \ Sech−1(X)o the fiber (πX
h )−1(p)

consists of a finite number of points.

Proof. Let 〈x1, . . . , xh〉 be an h-plane containing p with x1, . . . , xh ∈ X. Assume that (πX
h )−1(p)

has positive dimension. Then the image of the differential of πX
h at p has dimension smaller that

dim(X)h + h − 1. Since Tx1
X, . . . , Txh

X are contained in the image of the differential of πX
h at p we

conclude that {x1 . . . , xh} ∈ Th(X). �

Corollary 2.6. If Th(X) is empty, X is h-identifiable and Sech(X)o \Sech−1(X)o is normal then any

point p ∈ Sech(X)o \ Sech−1(X)o is h-identifiable.

Proof. Since X is h-identifiable πX
h is birational, and since Th(X) is empty Proposition 2.5 yields that

πX
h is finite over Sech(X)o \ Sech−1(X)o. To conclude it is enough to note that if the fiber (πX

h )−1(p)
over p ∈ Sech(X)o \ Sech−1(X)o has degree bigger that one then Sech(X)o is not normal at p. �
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Corollary 2.7. Let X ⊂ PN be a smooth projective variety of dimension n embedded by a line bundle

L = ωX ⊗A2(n+1) ⊗B, where A is very ample and B is nef. If T2(X) is empty and X is 2-identifiable

then any point p ∈ Sec2(X) \X is 2-identifiable.

Proof. By [Ull16, Corollary C] Sec2(X) is normal. Hence, Corollary 2.6 yields that any point p ∈
Sec2(X)o \ Xo is 2-identifiable. Now, let p ∈ Sec2(X) \ X be a point lying on a line L tangent to X
at x ∈ X. Assume that the is another line L′ through p that is secant to X. If L′ is tangent to X at
a point x′ then TxX ∩ Tx′X 6= ∅ and hence T2(X) 6= ∅. If L′ is a proper secant then arguing as in the
proof of Proposition 2.5 we get that the fiber (πX

2 )−1(p) is finite and hence Sec2(X) is not normal at
p contradicting [Ull16, Corollary C]. �

Proposition 2.8. Let X ⊂ PN be a smooth projective variety of dimension n. If T2h(X) is empty

then any point of Sech(X) \ Sech−1(X) is h-identifiable. Furthermore, Sing(Sech(X)) ⊂ Sech−1(X).

Proof. Let p ∈ Sech(X) \ Sech−1(X) and assume that there are two (h − 1)-planes H,H ′ through p
intersecting X in schemes of dimension zero and degree h supported respectively on {x1, . . . , xa} and
{x′

1, . . . , x
′
b}.

Then H ⊂ 〈Tx1
X, . . . , TxaX〉 and H ′ ⊂

〈

Tx′

1
X, . . . , Tx′

a
X

〉

yield that p ∈ 〈Tx1
X, . . . , TxaX〉 ∩

〈

Tx′

1
X, . . . , Tx′

a
X

〉

and hence Ta+b(X) 6= ∅. To conclude it is enough to note that a+ b ≤ 2h and that

T2h(X) = ∅ implies Th′(X) = ∅ for all h′ ≤ 2h.
Therefore, πX

h is 1-to-1 over Sech(X) \ Sech−1(X) and since Th(X) = ∅, arguing as in Proposition
2.5, we have that πX

h is a submersion over Sech(X) \ Sech−1(X) and hence Sech(X) \ Sech−1(X) is
smooth. �

Thanks to the theory developed in [MM22, Section 2] it is possible to relate Terracini loci to the
Bronowski’s conjecture [CR06, Remark 4.6] which has been proved false and amended, by requiring
the non degeneracy of the Gauss map of X, in [MM22, Theorem 1.3, Conjecture 1.4].

Notation 2.9. Let X ⊂ PN be an irreducible and non-degenerate variety. A general h-tangential
projection of X is a linear projection τX

x1,...,xh
: X 99K Xh ⊂ PNh from the linear span of h tangent

spaces 〈Tx1
X, . . . , Txh

X〉 where x1, . . . , xh ∈ X are general points. When there will be no danger of
confusion we will denote a general h-tangential projection τX

x1,...,xh
simply by τX

h .

Notation 2.10. Consider the map πX
h+1 : Sech+1(X) → Sech+1(X) ⊂ PN . For a general point

p ∈ Sech(X) ⊂ Sech+1(X) we split the fiber πX
h+1(p) in two parts T h

p , R
h
p defined as follows:

- the general point of the trivial part T h
p is a pair (p,Λ) where Λ is an h-plane (h + 1)-secant

to X of the form Λ = 〈x,Λ′〉 with x ∈ X and Λ′ an (h − 1)-plane h-secant to X and passing
through p;

- the residual part Rh
p is the closure of the complement of Tp in (πX

h+1)−1(p).

The following is the revised version of Bronowski’s conjecture in [MM22, Conjecture 1.4].

Conjecture 2.11. Let X ⊂ PN be an irreducible and non-degenerate variety with non degenerate

Gauss map. The variety X is h-identifiable if and only if a general (h − 1)-tangential projection

τX
h−1 : X 99K Xh−1 ⊂ PNh−1 is birational.

Proposition 2.12. Let X ⊂ PN be an irreducible and non-degenerate variety such that T2h−1(X) is

empty. Then X has non degenerate Gauss map and Conjecture 2.11 holds true for X and the integer

h, that is X is h-identifiable if and only if a general (h−1)-tangential projection τX
h−1 : X 99K Xh−1 ⊂

PNh−1 is birational.

Proof. First, note that the Gauss map of X is degenerate if and only if a general tangent space of X
is tangent to X along a positive dimensional subvariety and in this case T2(X) is non empty.

Let p ∈ Sech−1(X) be a general point, and consider an (h− 2)-plane 〈x1, . . . , xh−1〉 through p with
x1, . . . , xh−1 ∈ X. Assume that the residual part Rh−1

p is non empty. Then there is an (h − 1)-plane
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〈x′
1, . . . , x

′
h〉 through p with x′

1, . . . , x
′
h ∈ X and at least two of the x′

i do not belong to {x1, . . . , xh−1}.

Therefore, T2h−1(X) 6= ∅ contradicting the hypotheses. Therefore, Rh−1
p is empty and to conclude it

is enough to apply [MM22, Corollary 2.18]. �

3. Ample bodies and toric varieties

Let N be a rank n free abelian group, M := Hom(N,Z) its dual and MQ := M ⊗Z Q the corre-
sponding rational vector space. Let P ⊆ MQ be a full-dimensional lattice polytope, that is the convex
hull of finitely many points in M which do not lie on a hyperplane. The polytope P defines a polarized
pair (XP ,H) consisting of the toric variety XP together with a very ample Cartier divisor H of XP .
More precisely XP is the Zariski closure of the image of the monomial map

(3.1)
φP : (k∗)n −→ PN

u 7→ [χm(u) : m ∈ P ∩M ]

where P ∩ M = {m0, . . . ,mN }, χm(u) denotes the Laurent monomial in the variables (u1, . . . , un)
defined by the point m, and H is a hyperplane section of XP .

Lemma 3.2. Let X be a smooth projective toric variety with one-parameter subgroup lattice N and

let p1, p2 ∈ X be two distinct points. Then there exists v ∈ N such that the two limits

q1 := lim
t→0

tv · p1, q2 := lim
t→0

tv · p2

are two distinct points which are either torus invariant or lie on a torus invariant curve.

Proof. Let T be the big torus of X and let Xi be the Zariski closure of the orbit T · pi. Recall that
both q1 and q2 are invariant fixed points for a general v ∈ N . If X1 ∩ X2 is empty, then for such a
general v ∈ N we get two distinct invariant points. Assume now that X1 ∩ X2 is non empty. Then
there exists an invariant point q ∈ X1 ∩ X2. Let U ⊆ X be an open invariant affine subset which
contains q. Since U has non-empty intersection with T · pi it follows that pi ∈ U .

The above analysis allows one to reduce to the case where both p1 and p2 are contained in an open
affine subset U ≃ kn with the standard action (k∗)n × kn → kn given by (t1, . . . , tn) · (x1, . . . , xn) =
(t1x1, . . . , tnxn). Since p1 and p2 are distinct they must differ for at least one coordinate, say the first
one. Choosing v = (0, 1, . . . , 1) one has tv · (x1, x2, . . . , xn) = (x1, tx2, . . . , txn) so that the two limits
q1 and q2 remain distinct and both lie on the invariant curve {x2 = · · · = xn = 0}. �

Definition 3.3. Let P ⊆ MQ be a lattice polytope. The length of P is

ℓ(P ) := min{|L ∩M | − 1 |L is a 1-dimensional face of P}.

Proposition 3.4. Let P ⊆ MQ be a full dimensional lattice polytope such that the corresponding pro-

jective toric variety XP ⊆ P|P ∩M |−1 is smooth and linearly normal. Then the following are equivalent:

(a) ℓ(P ) ≥ 3;

(b) the 2-Terracini locus of XP is empty;

(c) XP does not contain conics.

Proof. The implication (b) ⇒ (c) is trivial since tangent lines to a conic intersect. The implication
(c) ⇒ (a) follows from the fact that if XP does not contain conics in particular it does not contain
invariant conics. Thus any edge of P has length at least three.

We now prove (a) ⇒ (b). Thanks to Lemma 3.2 it is enough to prove that Tx1
XP ∩ Tx2

XP = ∅
for two distinct points x1, x2 ∈ XP lying on an invariant curve. If the two points are invariant ones,
we claim that the corresponding double points impose independent conditions on the linear system
of hyperplane sections since imposing each invariant double point means removing from P a vertex
together with all the points at distance one from it.

Since any two vertexes have distance at least three, it follows that two vertexes can not share the
same point at distance one, which proves the claim.

If at least one point is not invariant then both points are contained in a common invariant affine
chart. Consider the local parametrization (3.1) of XP . We may prove the claim for the invariant
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curves in this chart since for the other ones it is enough to consider a change of variables in the torus.
Up to a change of variables we may write (3.1) as follows:

φP : (k∗)n −→ PN

(u1, . . . , un) 7→ [1 : u1 : · · · : ud1

1 : · · · : un : · · · : udn
n , φ1 : · · · : φN−d1−···−dn

]

where φi(u1, . . . , un) is a monomial depending on at least two of the uj. Note that

(i) since XP is smooth the monomials u1, . . . , un must appear in the expression of φP ;
(ii) the monomials u1u2, . . . , u1un must also appear in the expression of φP since XP ⊆ PN is

linearly normal and u1ui is in the convex hull of u2
1 and u2

i .

Let C ⊂ XP be a torus invariant curve say C = φP ({u2 = · · · = un = 0}), and consider two distinct
points x1 = (1, a, . . . , ad1 , 0, . . . , 0), x2 = (1, b, . . . , bd1 , 0, . . . , 0) of C. Now, since all the 1-dimensional
faces of P have length at least three (i) and (ii) yield that the Terracini matrix TXP

(x1, x2) has a
minor Ma,b of size (2n+ 2) of the following form

Ma,b =

(

Aa,b 04,2n−2

02n−2,4 Ba,b

)

where 0i,j denotes the i× j zero matrix

Aa,b =









1 a a2 a3

0 1 2a 3a2

1 b b2 b3

0 1 2b 3b2









and Ba,b = Diag2n−2(Ca,b)

is the size 2n − 2 matrix having n− 1 copies of

Ca,b =

(

1 a
1 b

)

on the main diagonal and whose other entries are zero. Note that det(Aa,b) = (b−a)4 and det(Ba,b) =
(b− a)n−1. Therefore, det(Ma,b) = det(Aa,b) det(Ba,b) = (b− a)n+3 proving the claim. �

Remark 3.5. The closure of the image of the map

φ : (k∗)2 −→ P9

(u1, u2) 7→ [1 : u1 : u2
1 : u3

1 : u2 : u2
2 : u3

2 : u1u2 : u2
1u2 : u1u

2
2]

is the degree three Veronese embedding V 2
3 ⊂ P9. Proposition 3.4 yields that T2(V 2

3 ) is empty. Now,
let XP ⊂ P8 be the projection of V 2

3 from [0 : · · · : 0 : 1 : 0 : 0], that is the closure of the image of the
map φP obtained by removing u1u2 from the expression of φ. The variety XP is smooth.

For any pair of points of the form x1 = φP (a, 0), x2 = φP (−a, 0) we have Tx1
XP ∩ Tx2

XP 6= ∅ and
so T2(XP ) is non empty. Therefore, the assumption on the linear normality of XP in Proposition 3.4
can not be dropped.

Example 3.6. We show that 2-Terracini loci can originate from curves of degree greater than two.
The closure of the image of the map

φ : k2 −→ P6

(u1, u2) 7→ [u3
1 : u2

1u
3
2 : u2

1u
2
2 : u2

1u2 : u1u
2
2 : u1u2 : u2]

defined by the following lattice polygon
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is a surface X ⊂ P6 of degree eight, and C = φ({u1 − u2 = 0}) ⊂ X is a rational normal quartic. The
Terracini matrix of φ at any two general points of the curve {u1 − u2 = 0} is the following



















1 1 1 1 1 1 1
3 2 2 2 1 1 0
0 3 2 1 2 1 1
t3 t5 t4 t3 t3 t2 t
3t2 2t4 2t3 2t2 t2 t 0
0 3t4 2t3 t2 2t2 t 1



















where we assume one of the two points to be the image of (1, 1). This matrix has always rank five
since the vector

(t5 − t4 − 2t3,−t4 + t3,−t5 + t4, 2t2 + t− 1,−t3 + t2,−t2 + t)

is in the kernel of its transpose.

In what follows we make use of [BC21, Theorem 3.5] and [BC21, Lemma 3.6] to prove emptiness
of Terracini loci for a class of embedded projective toric variety. In order to this we introduce an
unbounded convex set attached to a projective variety.

Definition 3.7. Let X be a smooth projective variety. The ample body of X is

AX := {D ∈ N1(X)R : D · C ≥ 1 for any curve C}.

Observe that AX is an unbounded convex set such that AX + Nef(X) = AX .

Proposition 3.8. Let X be a smooth projective variety whose monoid of classes of curves is finitely

generated. Then AX is a polyhedron which is the Minkowski sum

AX = AX + Nef(X)

of a rational polytope AX ⊆ N1(X)R together with its recession cone Nef(X) ⊆ N1(X)R.

Proof. By hypothesis there exist finitely many irreducible curves C1, . . . , Cr whose classes in N1(X)R
form a Hilbert basis of the Mori cone of X. Any curve of X is rationally equivalent to a non-negative
sum of these curves.

It follows that AX is intersection of the finitely many half-spaces {D ∈ N1(X)R : D · Ci ≥ 1},
which proves the statement. Being AX a polyhedron it is Minkowski sum of a polytope AX together
with its recession cone σX . From the definition of AX it immediately follows that Nef(X) = σX . �

Proposition 3.9. Let X be a smooth projective variety whose Mori cone is rational polyhedral. Then

AX is a normal lattice polytope if and only if for any h the equality

(h · AX) ∩ N1(X) =
h

∑

i=1

(AX ∩ N1(X))

holds.

Proof. By the definition of normal lattice polytope we have that

(h · AX) ∩ N1(X) =
h

∑

i=1

(AX ∩ N1(X))

and this is exactly what we need for the second condition to be satisfied. �

Remark 3.10. Observe that if AX is a point then is must necessarily be a lattice point and of course
a polytope consisting of just one lattice point is normal.

Lemma 3.11. Let X be a projective variety with smooth locus Xo and let A,B be Weil divisors on

X. Assume that for any subsets SA, SB ⊆ Xo of cardinality n := |SA| > 1 and |SB | = 2 one has

H1(X,OX (A) ⊗ ISA
) = H1(X,OX (B) ⊗ ISB

) = 0.

Then H1(X,OX (A+B) ⊗ IS) = 0 for any subset S ⊆ Xo of cardinality n+ 1.
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Proof. Let S ⊆ Xo be a subset of cardinality n + 1. Given any p ∈ S write S = U ∪ {p, q} with
|U | = n− 1 non empty and p 6= q. By hypothesis there exist

f ∈ H0(X,OX(A) ⊗ IU ) and g ∈ H0(X,OX (B) ⊗ Ip)

which do not vanish at q. Thus fg ∈ H0(X,OX (A+B) ⊗ IU∪{p}) does not vanish at q. �

Corollary 3.12. Let X be a projective variety with smooth locus Xo and let D be a Weil divisor which

is sum of n very ample divisors. Then any subset of Xo of cardinality n + 1 imposes independent

conditions on D.

Proof. Observe that if B is very ample then it satisfies the hypothesis on the divisor B in Lemma 3.11.
The statement follows by induction on n. �

Proposition 3.13. Let X ⊆ PN be a projective variety embedded by a complete linear system |L|.
Assume that L is sum of 2h− 1 ≥ 3 very ample divisors. Then Th(X) is empty.

Proof. Let S ⊆ Xo be a subset of h distinct points. Write L = A + B + C where both A and B are
sum of h − 1 very ample divisors and C is very ample. Since C is very ample for any p ∈ S, there is
a smooth element in the linear system of C through p which does not contain any point of S \ {p}.

By Corollary 3.12 S imposes independent conditions on A. Since also B + C is very ample the
hypotheses of [BC21, Lemma 3.6] are satisfied so that for any p ∈ S the scheme (S \ {p}) ∪ {2p}
imposes independent conditions on B+C. Finally, to conclude it is enough to apply [BC21, Theorem
3.5] with L1 = B + C and L2 = A. �

Now, we are ready to prove the main result of this section.

Theorem 3.14. Let P ⊆ MQ be a full dimensional lattice polytope such that the corresponding

projective toric variety XP ⊆ P|P ∩M |−1, embedded by a complete linear system |L|, is smooth. If AXP

is a normal lattice polytope then the following are equivalent:

(a) ℓ(P ) = s with s ≥ 2h− 1;

(b) L ∈ s · AX ;

(c) Th(X) is empty.

Proof. Note that (b) ⇒ (c) follows from Propositions 3.9 and 3.13. Now, assume that s < 2h − 1.

Then XP contains an invariant curve embedded as a curve C ⊂ P|P ∩M |−1 of degree s. Since XP is
smooth, arguing as in the proof of Proposition 3.4, we get that C ⊂ P|P ∩M |−1 is a rational normal
curve of degree s. Since s < 2h − 1 the span of any h tangent lines of C has dimension smaller than
expected and hence the span of h tangent spaces of XP at points of C has dimension smaller than
expected as well. Therefore, Th(X) is non empty proving that (c) ⇒ (a).

Finally, to prove that (a) ⇒ (c) note that since ℓ(P ) = s all the toric invariant curves in XP have
degree at least s, and since these curves generate the Mori cone of XP we get that L ∈ s · AX . �

There exist smooth toric varieties for which AX is not a normal lattice polytope as the following
example shows.

Example 3.15. Let X be the smooth toric surface whose fan is the following:

• •

•

•

• •••

•

D1 D2

D3

D4

D5

D6

D7

D8

D9

•

Then AX is not a lattice polytope. To prove this observe that the Q-divisor

D = D3 +D4 + 4D5 + 3D6 + 4D7 +
7

2
D8 + 5D9

has intersection product at least one with any Di and the equality holds for i ∈ {1, 2, 3, 4, 5, 7, 8}.
Since the classes of these seven divisors form a basis of the rational Picard lattice, it follows that the
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class of D is a vertex of AX . On the other hand D ·D6 = 3
2 , so that the class of D can not be in the

integral Picard group and so AX con not be a lattice polytope.

4. Applications

In this section we apply our main results in Sections 2 and 3 to several classes of projective varieties.

Proposition 4.1. Let X ⊂ PN be a smooth toric variety of Picard rank two embedded by the complete

linear system of a divisor L ∈ (2h− 1) · AX . Then Th(X) is empty.

Proof. If X is a smooth projective toric variety with Picard rank two, then its nef cone is generated
by two primitive rays, so that it is simplicial.

To prove that it is also smooth we proceed as follows. Let D1, . . . ,Dr be the prime torus invariant
divisors of X and say that D1,D2 are the two whose classes generate Nef(X). The intersection
⋂r

i=3 Di is a torus invariant point p ∈ X and the local divisor class group Cl(X, p) is generated
by the class of the prime invariant divisors which contain p, that is by the Di with i ≥ 3. Thus
Cl(X, p) = Cl(X \D1 ∪D2) = Cl(X)/〈D1,D2〉.

On the other hand Cl(X, p) is trivial, being X smooth, so that we can conclude that Cl(X) =
〈D1,D2〉, which proves that the classes of D1 and D2 form a basis of Cl(X). This shows that Nef(X)
is smooth. Being this cone smooth and simplicial we get that AX is a point. Finally, to conclude it is
enough to apply Theorem 3.14. �

Choose positive integers a1 ≤ a2 ≤ · · · ≤ an such that
∑n

i=1 ai = N − n + 1, Λi
∼= Pai ⊂ PN

complementary linear subspaces, Ci ⊂ Pai rational normal curves, isomorphisms φi : C1 → Ci, and
consider the rational normal scroll Sa1,...,an =

⋃

p∈C1
〈p, φ2(p), . . . , φn(p)〉. Let H be the restriction to

Sa1,...,an of the hyperplane section of PN , D = dH and Sa1,...,an,d ⊂ PNd the image of Sa1,...,an via the
embedding induced by D.

Corollary 4.2. If h ≤ ⌈d
2⌉ then Th(Sa1,...,an,d) is empty.

Proof. Since Sa1,...,an,d is a smooth toric variety of Picard rank two the claim follows from Proposition
4.1. �

Let nnn = (n1, . . . , nr) and ddd = (d1, . . . , dr) be two r-uples of positive integers, with n1 ≤ · · · ≤ nr and

N(nnn,ddd) =
∏r

i=1

(ni+di

ni

)

− 1. The Segre-Veronese variety SV nnn
ddd is the image in PN(nnn,ddd) of Pn1 × · · · ×Pnr

via the embedding induced by OPnnn(d1, . . . , dr) = OP(V ∗

1
)(d1) ⊠ · · · ⊠ OP(V ∗

1
)(dr).

As a consequence of Theorem 3.13 we recover the results on Terracini loci of Segre-Veronese varieties
in [Bal22a, Theorem 1.3].

Corollary 4.3. If h ≤ ⌈di

2 ⌉ for all i = 1, . . . , r then Th(SV nnn
ddd ) is empty.

Proof. Since h ≤ ⌈di

2 ⌉ for all i = 1, . . . , r we may write L = 2A + B where L = OPnnn(d1, . . . , dr),
A = OPnnn(h− 1, . . . , h− 1) and B = OPnnn(b1, . . . , br) with bi ≥ 1 for all i = 1, . . . , r.

Since the Mori cone of Pn1 × · · · × Pnr is generated by the classes [li], where li ⊂ Pni is a line to
conclude it is enough to apply Theorem 3.13. �

Corollary 4.4. If 2h ≤ ⌈di

2 ⌉ for all i = 1, . . . , r then any point of Sech(SV nnn
ddd ) \ Sech−1(SV nnn

ddd ) is

h-identifiable and Sech(SV nnn
ddd ) is smooth outside of Sech−1(SV nnn

ddd ).

Proof. The claim follows immediately from Corollary 4.3 and Proposition 2.8. �

Proposition 4.5. Let X ⊂ PN be a homogeneous variety embedded by the complete linear system of

a divisor L ∈ (2h− 1) · AX . Then Th(X) is empty.

Proof. If X is a homogeneous variety then Nef(X) = Eff(X) and both cones are smooth and simpli-
cial [Bri05, Proposition 1.4.1]. In particular AX is the lattice point given by the sum of the primitive
generators of the rays of the nef cone. Hence, to conclude it is enough to apply Propositions 3.9 and
3.13. �
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If L ∈ r · AX with r ≤ 2h − 2 the Terracini locus is in general non empty as the following result
shows.

Proposition 4.6. Let G(r, n) ⊂ PN be the Grassmannian of r-linear spaces in Pn embedded with the

Plücker embedding. Then T2(G(r, n)) is the closure of

{([U ], [U ′]) ∈ G(r, n) × G(r, n) | U 6= U ′ and dim(U ∩ U ′) ≥ r − 2}/S2

in (G(r, n) × G(r, n))/S2.

Proof. By [MR18, Lemma 6.5] we have the following characterization of the tangent space of the
Grassmannian at a point [U ] ∈ G(r, n):

T[U ](G(r, n)) = 〈eI | d(I, {0, . . . , r}) ≤ 1〉

where (e0, . . . , en) is a basis of kn+1, U is generated by e0, . . . , er ∈ Pn, eI = ei0
∧ · · · ∧ eir and d(I, J)

is the Hamming distance between the two lists I and J.
Now, given [U ], [V ] ∈ G(r, n) let s := dim(U ∩V ), after a base change, we can write U = 〈e0, . . . , er〉

and U ′ = 〈e0, . . . , es, er+1, . . . , er+(r−s)〉. Note that s = dim(U ∩ U ′). Therefore

T[U ](G(r, n)) ∩ T[U ′](G(r, n)) = 〈eI | d(I, {0, . . . , r}) ≤ 1〉 ∩ 〈eI | d(I, {0, . . . , s, r + 1, . . . , r + (r − s)}) ≤ 1〉
= 〈eI | d(I, {0, . . . , r}) ≤ 1 and d(I, {0, . . . , s, r + 1, . . . , r + (r − s)}) ≤ 1〉.

Hence, T[U ](G(r, n))∩T[U ′](G(r, n)) is empty if and only if d({0, . . . , r}, {0, . . . , s, r+1, . . . , r+(r−s)}) ≥
3 which is equivalent to s ≤ r − 3. �

4.7. Fano varieties. We show that Theorem 3.14 applies to smooth toric Fano varieties of dimension
at most four.

Proposition 4.8. Let X be a smooth toric Fano variety of dimension at most four. Then AX is a

lattice point.

Proof. We load the n-th entry from the smooth toric Fano varieties database using the function FanoX

from the following library: https://github.com/alaface/Terracini_Loci. The following function
computes the ample polytope of the toric variety X.

AX := function(X)

forms := IntersectionForms(X);

pol := &meet[HalfspaceToPolyhedron(v,1) : v in forms];

return CompactPart(pol);

end function;

Smooth toric varieties of dimension at most four are the first 147 entries of the database. For each
such variety we check with the following script

> time {#Points(AX(FanoX(n))) : n in [1..147]};

{ 1 }

Time: 153.710

that the ample polytope consists of a point. �

However, there are smooth toric Fano 5-fold for which AX is not a point.

Example 4.9. LetX ⊆ P192 be the smooth projective toric Fano 5-fold, ID. 556 in the Graded Ring Database,
whose Cox ring C[x1, . . . , x10] has the following grading matrix













0 0 0 1 1 0 0 0 0 1
0 0 1 0 0 0 1 1 0 0
0 0 1 0 1 0 0 1 1 0
0 1 1 0 1 0 0 1 0 1
1 0 0 0 0 1 0 0 1 0













https://github.com/alaface/Terracini_Loci
http://www.grdb.co.uk/search/toricsmooth


AMPLE BODIES AND TERRACINI LOCI OF PROJECTIVE VARIETIES 11

Let Di be the i-th prime invariant torus divisor of X. Then AX is a lattice segment of length one
whose lattice points are the classes of −KX and −KX +D3.

Proof of Theorem 1.3. Since by Proposition 4.8 AX is a lattice point Theorem 3.14 applies. �
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