RESEARCH Open Access

Goodbye Hartmann trial: a prospective, international, multicenter, observational study on the current use of a surgical procedure developed a century ago

Gennaro Perrone¹, Mario Giuffrida^{2,3*}, Fikri Abu-Zidan⁴, Vitor F. Kruger⁵, Marco Livrini¹, Gabriele Luciano Petracca¹, Giorgio Rossi¹, Antonio Tarasconi⁶, Brian W. C. A. Tian⁷, Elena Bonati², Ricardo Mentz⁸, Federico N. Mazzini⁸, Juan P. Campana⁸, Elisabeth Gasser⁹, Reinhold Kafka-Ritsch⁹, Daniel M. Felsenreich¹⁰, Christopher Dawoud¹⁰, Stefan Riss¹⁰, Carlos Augusto Gomes¹¹, Felipe Couto Gomes¹¹, Ricardo Alessandro Teixeira Gonzaga¹², Cassio Alfred Brattig Canton¹², Bruno Monteiro Pereira¹³, Gustavo P. Fraga⁵, Leticia Gonçalves Zem⁵, Vinicius Cordeiro-Fonseca¹⁴, Renato de Mesquita Tauil¹⁴, Boyko Atanasov¹⁵, Nikolay Belev¹⁵, Nikola Kovachev¹⁵, L. Juan José Meléndez¹⁶, Ana Dimova¹⁷, Stefan Dimov¹⁷, Zdravko Zelić¹⁷, Goran Augustin¹⁸, Branko Bogdanić¹⁸, Trpimir Morić¹⁸, Elie Chouillard¹⁹, Melinda Bajul²⁰, Belinda De Simone²¹, Yves Panis²², Francesco Esposito²³, Margherita Notarnicola^{24,25}, Lelde Lauka²⁴, Anna Fabbri²⁴, Hassen Hentati²⁵, Iskander Fnaiech²⁵, Venara Aurélien²⁶, Marie Bougard²⁶, Maxime Roulet²⁶, Zaza Demetrashvili²⁷, Irakli Pipia²⁷, Giorgi Merabishvili²⁷, Konstantinos Bouliaris²⁸, Georgios Koukoulis²⁸, Christos Doudakmanis²⁸, Sofia Xenaki²⁹, Emmanuel Chrysos²⁹, Stamatios Kokkinakis²⁹, Panteleimon Vassiliu³⁰, Nikolaos Michalopoulos³⁰, Ioannis Margaris³⁰, Aristotelis Kechagias³¹, Konstantinos Avgerinos³¹, Jevgeni Katunin³¹, Eftychios Lostoridis³², Eleni-Aikaterini Nagorni³², Antonio Pujante³², Francesk Mulita³³, Ioannis Maroulis³³, Michail Vailas³³, Athanasios Marinis³⁴, Ioannis Siannis³⁴, Eirini Bourbouteli³⁴, Dimitrios K. Manatakis³⁵, Nikolaos Tasis³⁵, Vasileios Acheimastos³⁵, Sotiropoulou Maria³⁶, Kapiris Stylianos³⁶, Harilaos Kuzeridis³⁶, Dimitrios Korkolis³⁷, Evangelos Fradelos³⁷, George Kavalieratos³⁷, Thalia Petropoulou³⁸, Andreas Polydorou³⁸, Ioannis Papacostantinou³⁸, Tania Triantafyllou³⁹, Despina Kimpizi³⁹, Dimitrios Theodorou³⁹, Konstantinos Toutouzas⁴⁰, Alexandros Chamzin⁴⁰, Maximos Frountzas⁴⁰, Dimitrios Schizas⁴¹, Ioannis Karavokyros⁴¹, Athanasios Syllaios⁴¹, Alexandros Charalabopoulos⁴², Maria Boura⁴², Efstratia Baili⁴², Orestis Ioannidis⁴³, Lydia Loutzidou⁴³, Elissavet Anestiadou⁴³, Ioannis Tsouknidas⁴⁴, Georgios Petrakis⁴⁴, Eleni Polenta⁴⁴, Lovenish Bains⁴⁵, Rahul Gupta⁴⁶, Sudhir K. Singh⁴⁶, Archana Khanduri⁴⁶, Miklosh Bala⁴⁷, Asaf Kedar⁴⁷, Marcello Pisano⁴⁸, Mauro Podda⁴⁸, Adolfo Pisanu⁴⁸, Gennaro Martines⁴⁹, Giuseppe Trigiante⁴⁹, Giuliano Lantone⁴⁹, Antonino Agrusa⁵⁰, Giuseppe Di Buono⁵⁰, Salvatore Buscemi⁵⁰, Massimiliano Veroux⁵¹, Rossella Gioco⁵¹, Gastone Veroux⁵¹, Luigi Oragano⁵², Sandro Zonta⁵², Federico Lovisetto⁵², Carlo V. Feo⁵³, Antonio Pesce⁵³, Nicolò Fabbri⁵³, Giulio Lantone⁵⁴, Fabio Marino⁵⁴,

*Correspondence:
Mario Giuffrida
mario.giuffrida4@gmail.com
Full list of author information is available at the end of the article

Fabrizio Perrone⁵⁴, Leonardo Vincenti⁵⁵, Vincenzo Papagni⁵⁵, Arcangelo Picciariello⁵⁵, Stefano Rossi⁵⁶, Biagio Picardi⁵⁶, Simone Rossi Del Monte⁵⁶, Diego Visconti⁵⁷, Giulia Osella⁵⁷, Luca Petruzzelli⁵⁷, Giusto Pignata⁵⁸, Jacopo Andreuccetti⁵⁸, Rossella D'Alessio⁵⁸, Massimo Buonfantino⁵⁹, Eleonora Guaitoli⁵⁹, Stefano Spinelli⁵⁹, Gianluca Matteo Sampietro⁶⁰, Carlo Corbellini⁶⁰, Leonardo Lorusso⁶⁰, Alice Frontali^{61,62}, Isabella Pezzoli⁶¹, Alessandro Bonomi⁶¹, Andrea Chierici⁶², Christian Cotsoglou⁶², Giuseppe Manca⁶³, Antonella Delvecchio⁶³, Nicola Musa⁶³, Massimiliano Casati⁶⁴, Laface Letizia⁶⁴, Emmanuele Abate⁶⁴, Giorgio Ercolani⁶⁵, Fabrizio D'Acapito⁶⁵, Leonardo Solaini⁶⁵, Gianluca Guercioni⁶⁶, Simone Cicconi⁶⁶, Diego Sasia⁶⁷, Felice Borghi⁶⁷, Giorgio Giraudo⁶⁷, Giuseppe Sena⁶⁸, Pasquale Castaldo⁶⁸, Eugenia Cardamone⁶⁸, Giuseppe Portale⁶⁹, Matteo Zuin⁶⁹, Ylenia Spolverato⁶⁹, Marialusia Esposito⁷⁰, Roberta Maria Isernia⁷⁰, Maria Di Salvo⁷⁰, Romina Manunza⁷¹, Giuseppe Esposito⁷¹, Marcello Agus⁷¹, Emanuele Luigi Giuseppe Asti⁷², Daniele Tiziano Bernardi⁷², Tommaso Panici Tonucci⁷², Davide Luppi⁷³, Massimiliano Casadei⁷³, Stefano Bonilauri⁷³, Angela Pezzolla⁷⁴, Annunziata Panebianco⁷⁴, Rita Laforgia⁷⁴, Maurizio De Luca⁷⁵, Monica Zese⁷⁵, Dario Parini⁷⁵, Elio Jovine⁷⁶, Giuseppina De Sario⁷⁶, Raffaele Lombardi⁷⁶, Giovanni Aprea⁷⁷, Giuseppe Palomba⁷⁷, Marianna Capuano⁷⁷, Giulio Argenio⁷⁸, Gianluca Orio⁷⁸, Mariano Fortunato Armellino⁷⁸, Marina Troian⁷⁹, Martina Guerra⁷⁹, Carlo Nagliati⁷⁹, Alan Biloslavo⁸⁰, Paola Germani⁸⁰, Giada Aizza⁸⁰, Igor Monsellato⁸¹, Ali Chaouki Chahrour⁸¹, Gabriele Anania⁸², Cristina Bombardini⁸², Francesco Bagolini⁸², Gabriele Sganga⁸³, Pietro Fransvea⁸³, Valentina Bianchi⁸³, Paolo Boati⁸⁴, Francesco Ferrara⁸⁴, Francesco Palmieri⁸⁴, Pasquale Cianci⁸⁵, Domenico Gattulli⁸⁵, Enrico Restini⁸⁵, Nicola Cillara⁸⁶, Alessandro Cannavera⁸⁶, Gabriela Elisa Nita⁸⁷, Jlenia Sarnari⁸⁷, Francesco Roscio⁸⁸, Federico Clerici⁸⁸, Ildo Scandroglio⁸⁸, Stefano Berti⁸⁹, Alessandro Cadeo⁸⁹, Alice Filippelli⁸⁹, Luigi Conti⁹⁰, Carmine Grassi⁹⁰, Gaetano Maria Cattaneo⁹⁰, Marina Pighin⁹¹, Davide Papis⁹¹, Giovanni Gambino⁹², Vanessa Bertino⁹², Domenico Schifano⁹², Daniela Prando⁹³, Luisella Fogato⁹³, Fabio Cavallo⁹³, Luca Ansaloni⁹⁴, Roberto Picheo⁹⁴, Nicholas Pontarolo⁹⁴, Norma Depalma⁹⁵, Marcello Spampinato⁹⁵, Stefano D'Ugo⁹⁵, Luca Lepre⁹⁶, Michela Giulii Capponi⁹⁶, Rossella Domenica Campa⁹⁶, Giuliano Sarro^{97,98}, Vincenza Paola Dinuzzi⁹⁷, Stefano Olmi⁹⁹, Matteo Uccelli⁹⁹, Davide Ferrari⁹⁹, Marco Inama¹⁰⁰, Gianluigi Moretto¹⁰⁰, Michele Fontana¹⁰⁰, Francesco Favi¹⁰¹, Erika Picariello¹⁰¹, Alessia Rampini¹⁰¹, Andrea Barberis¹⁰², Antonio Azzinnaro¹⁰², Alba Oliva¹⁰², Luigi Totaro 103, Ilaria Benzoni 103, Valerio Ranieri 103, Gabriella Teresa Capolupo 104, Filippo Carannante 104, Marco Caricato 104, Maurizio Ronconi 105, Silvia Casiraghi 105, Giovanni Casole 105, Desire Pantalone 106, Giovanni Alemanno 106, Maximilian Scheiterle 106, Marco Ceresoli 107, Marco Cereda 107, Chiara Fumagalli 107, Federico Zanzi¹⁰⁸, Stefano Bolzon¹⁰⁸, Enrico Guerra¹⁰⁸, Francesca Lecchi¹⁰⁹, Paola Cellerino¹⁰⁹, Antonella Ardito¹⁰⁹, Rosa Scaramuzzo¹¹⁰, Andrea Balla¹¹⁰, Pasquale Lepiane¹¹⁰, Nicola Tartaglia¹¹¹, Antonio Ambrosi¹¹¹, Giovanna Pavone¹¹¹, Gian Marco Palini¹¹², Simone Veneroni¹¹², Gianluca Garulli¹¹², Claudio Ricci^{113,114}, Beatrice Torre^{113,114}, Iris Shari Russo^{113,114}, Matteo Rottoli^{113,114}, Marta Tanzanu^{113,114}, Angela Belvedere^{113,114}, Marco Milone¹¹⁵, Michele Manigrasso¹¹⁵, Giovanni Domenico De Palma¹¹⁵, Micaela Piccoli¹¹⁶, Gianmaria Casoni Pattacini¹¹⁶, Stefano Magnone¹¹⁷, Paolo Bertoli¹¹⁷, Michele Pisano¹¹⁷, Paolo Massucco¹¹⁸, Marco Palisi¹¹⁸, Andrea-Pierre Luzzi¹¹⁸, Francesco Fleres¹¹⁹, Guglielmo Clarizia¹¹⁹, Alessandro Spolini¹¹⁹, Yoshiro Kobe¹²⁰, Takayuki Toma¹²⁰, Fumihiko Shimamura¹²⁰, Robert Parker¹²¹, Sinkeet Ranketi¹²¹, Mercy Mitei¹²¹, Saulius Svagzdys¹²², Henrikas Pauzas¹²², Justas Zilinskas¹²², Tomas Poskus¹²³, Marius Kryzauskas¹²³, Matas Jakubauskas¹²³, Andee Dzulkarnaen Zakaria¹²⁴, Zaidi Zakaria¹²⁴, Michael Pak-Kai Wong 124, Asri Che Jusoh 125, Muhammad Nazreen Zakaria 125, Daniel Rios Cruz 126, Aurea Barbara Rodriguez Elizalde¹²⁶, Alejandro Bañon Reynaud¹²⁶, Edgard Efren Lozada Hernandez¹²⁷, Jose maria Victor Palomo Monroy¹²⁷, Diego Hinojosa-Ugarte¹²⁷, Martha Quiodettis¹²⁸, María Esther Du Bois¹²⁸, José Latorraca¹²⁸, Piotr Major¹²⁹, Michał Pędziwiatr¹²⁹, Magdalena Pisarska-Adamczyk¹²⁹, Maciej Walędziak¹³⁰, Andrzej Kwiatkowski¹³⁰, Łukasz Czyżykowski¹³⁰, Silvia Dantas da Costa¹³¹, Bela Pereira¹³¹, Ana Rita Oliveira Ferreira¹³¹, Filipe Almeida¹³², Ricardo Rocha¹³², Carla Carneiro¹³², Diego Pita Perez¹³³,

João Carvas¹³³, Catarina Rocha¹³³, Cátia Ferreira¹³⁴, Rita Marques¹³⁴, Urânia Fernandes¹³⁴, Pedro Leao¹³⁵, André Goulart¹³⁵, Rita Goncalves Pereira¹³⁶, Sara Daniela Direito Patrocínio¹³⁶, Nuno Gonçalo Gonçalves de Mendonça¹³⁶, Maria Isabel Cerqueira Manso¹³⁷, Henrique Manuel Cardoso Morais¹³⁷, Paulo Sebastião Cardoso¹³⁷, Valentin Calu¹³⁸, Adrian Miron¹³⁸, Elena Adelina Toma¹³⁸, Mahir Gachabayov¹³⁹, Abakar Abdullaev¹³⁹, Andrey Litvin¹⁴⁰, Taras Nechay¹⁴¹, Alexander Tyagunov¹⁴¹, Anvar Yuldashev¹⁴¹, Alison Bradley¹⁴², Michael Wilson¹⁴², Arpád Panyko¹⁴³, Zuzana Látečková¹⁴³, Vladimír Lacko¹⁴³, Dusan Lesko¹⁴⁴, Marek Soltes¹⁴⁴, Jozef Radonak¹⁴⁴, Victor Turrado-Rodriguez¹⁴⁵, Roser Termes-Serra¹⁴⁵, Xavier Morales-Sevillano¹⁴⁵, Pierfrancesco Lapolla¹⁴⁶, Andrea Mingoli¹⁴⁶, Gioia Brachini¹⁴⁶, Maurizio Degiuli¹⁴⁷, Silvia Sofia¹⁴⁷, Rossella Reddavid¹⁴⁷, Andrea de Manzoni Garberini 148, Angelica Buffone 148, Eduardo Perea del Pozo 149, Daniel Aparicio-Sánchez 149, Sandra Dos Barbeito¹⁴⁹, Mercedes Estaire-Gómez¹⁵⁰, Rebeca Vitón-Herrero¹⁵⁰, Mª de los Ángeles Gil Olarte-Marquez¹⁵⁰, José Gil-Martínez¹⁵¹, Felipe Alconchel¹⁵¹, Tatiana Nicolás-López¹⁵¹, Aida Cristina Rahy-Martin¹⁵², María Pelloni¹⁵², Raquel Bañolas-Suarez¹⁵², Fernando Mendoza-Moreno¹⁵³, Francisca García-Moreno Nisa¹⁵³, Manuel Díez-Alonso¹⁵³, María Elisa Valle Rodas¹⁵⁴, María Carmona Agundez¹⁵⁴, María Inmaculada Pérez Andrés¹⁵⁴, Claudia Cristina Lopes Moreira¹⁵⁵, Aintzane Lizarazu Perez¹⁵⁵, Iñigo Augusto Ponce¹⁵⁵, Ana María González-Castillo¹⁵⁶, Estela Membrilla-Fernández¹⁵⁶, Silvia Salvans¹⁵⁶, Mario Serradilla-Martín¹⁵⁷, Pablo Sancho Pardo¹⁵⁷, Daniel Rivera-Alonso¹⁵⁸, Jana Dziakova¹⁵⁸, Jose Mugüerza Huguet¹⁵⁸, Naila Pagès Valle¹⁵⁹, Enrique Colás Ruiz¹⁵⁹, Cristina Rey Valcárcel¹⁶⁰, Cristina Ruiz Moreno 160, Yeniffer Tatiana Moreno Salazar 160, Juan Jesús Rubio García 161, Silvia Sevila Micó 161, Joaquín Ruiz López¹⁶¹, Silvia Pérez Farré¹⁶², Maite Santamaria Gomez¹⁶², Nuria Mestres Petit¹⁶², Alberto Titos-García¹⁶³, Jose Manuel Aranda-Narváez¹⁶³, Laura Romacho-López¹⁶³, Luis Sánchez-Guillén¹⁶⁴, Veronica Aranaz-Ostariz¹⁶⁴, Marina Bosch-Ramírez¹⁶⁴, Aleix Martínez-Pérez¹⁶⁵, Elías Martínez-López¹⁶⁵, Juan Carlos Sebastián-Tomás 165, Granada Jimenez-Riera 166, Javier Jimenez-Vega 166, Jose Aurelio Navas Cuellar¹⁶⁶, Andrea Campos-Serra¹⁶⁷, Anna Muñoz-Campaña¹⁶⁷, Raguel Gràcia-Roman¹⁶⁷, Javier Martínez Alegre¹⁶⁸, Francisca Lima Pinto¹⁶⁸, Sara Nuñez O'Sullivan¹⁶⁸, Francisco Blanco Antona¹⁶⁹, Beatriz Muñoz Jiménez¹⁶⁹, Jaime López-Sánchez¹⁶⁹, Zahira Gómez Carmona¹⁷⁰, Rocio Torres Fernández¹⁷⁰, Isabel Blesa Sierra¹⁷⁰, Laura Román García de León¹⁷¹, Verónica Polaino Moreno¹⁷¹, Eva Iglesias¹⁷¹, Paola Lora Cumplido¹⁷², Altea Arango Bravo¹⁷², Ignacio Rey Simó¹⁷³, Carlota López Domínguez¹⁷³, Aloia Guerreiro Caamaño 173, Rafael Calleja Lozano 174, Manuel Durán Martínez 174, Álvaro Naranjo Torres 174, Javier Tomas Morales Bernaldo de Quiros¹⁷⁵, Gianluca Pellino¹⁷⁶, Miriam Moratal Cloquell¹⁷⁶, Elsa García Moller¹⁷⁶, Sami Jalal-Eldin¹⁷⁷, Ahmed K. Abdoun¹⁷⁷, Hytham K. S. Hamid¹⁷⁷, Varut Lohsiriwat¹⁷⁸, Aitsariya Mongkhonsupphawan¹⁷⁸, Oussama Baraket¹⁷⁹, Karim Ayed¹⁷⁹, Imed Abbassi¹⁷⁹, Ali Ben Ali¹⁸⁰, Houssem Ammar¹⁸⁰, Ali Kchaou¹⁸¹, Ahmed Tlili¹⁸¹, Imen Zribi¹⁸¹, Elif Colak¹⁸², Suleyman Polat¹⁸², Zehra Alan Koylu¹⁸², Ali Guner¹⁸³, Mehmet Arif Usta¹⁸³, Murat Emre Reis¹⁸³, Baris Mantoglu¹⁸⁴, Emre Gonullu¹⁸⁴, Emrah Akin¹⁸⁵, Fatih Altintoprak¹⁸⁵, Zulfu Bayhan¹⁸⁵, Necattin Firat¹⁸⁵, Arda Isik¹⁸⁶, Ufuk Memis¹⁸⁶, Mehmet Bayrak¹⁸⁷, Yasemin Altıntaş¹⁸⁷, Yasin Kara¹⁸⁸, Mehmet Abdussamet Bozkurt¹⁸⁸, Ali Kocataş¹⁸⁸, Koray Das¹⁸⁹, Ahmet Seker¹⁸⁹, Nazmi Ozer¹⁸⁹, Semra Demirli Atici¹⁹⁰, Korhan Tuncer¹⁹⁰, Tayfun Kaya¹⁹⁰, Zeynep Ozkan¹⁹¹, Onur Ilhan¹⁹¹, Ibrahim Agackiran¹⁹¹, Mustafa Yener Uzunoglu¹⁹², Eren Demirbas¹⁹², Yuksel Altinel¹⁹³, Serhat Meric¹⁹³, Nadir Adnan Hacım¹⁹³, Derya Salim Uymaz¹⁹⁴, Nail Omarov¹⁹⁴, Emre Balık¹⁹⁴, Giovanni D. Tebala¹⁹⁵, Hany Khalil¹⁹⁵, Mridul Rana¹⁹⁵, Mansoor Khan¹⁹⁶, Charlotte Florence¹⁹⁶, Christie Swaminathan 196, Cosimo Alex Leo 197, Lampros Liasis 197, Josef Watfah 197, Ivan Trostchansky 198, Edward Delgado¹⁹⁸, Marcelo Pontillo¹⁹⁸, Rifat Latifi¹⁹⁹, Raul Coimbra²⁰⁰, Sara Edwards²⁰⁰, Ana Lopez²⁰⁰, George Velmahos²⁰¹, Ander Dorken²⁰¹, Anthony Gebran²⁰¹, Amanda Palmer²⁰², Jeffrey Oury²⁰², James M. Bardes²⁰², Sirivan Suon Seng²⁰³, Lauren S. Coffua²⁰³, Asanthi Ratnasekera²⁰³, Tanya Egodage²⁰⁴, Karla Echeverria-Rosario²⁰⁴, Isabella Armento²⁰⁴, Lena M. Napolitano²⁰⁵, Naveen F. Sangji²⁰⁵, Mark Hemmila²⁰⁵,

Jacob A. Quick²⁰⁶, Tyler R. Austin²⁰⁶, Theodore S. Hyman²⁰⁶, William Curtiss²⁰⁷, Amanda McClure²⁰⁷, Nicholas Cairl²⁰⁷, Walter L. Biffl²⁰⁸, Hung P. Truong²⁰⁸, Kathryn Schaffer²⁰⁸, Summer Reames²⁰⁸, Filippo Banchini³, Patrizio Capelli³, Federico Coccolini²⁰⁹, Massimo Sartelli²¹⁰, Francesca Bravi²¹¹, Carlo Vallicelli¹⁰¹, Vanni Agnoletti¹⁰¹, Gian Luca Baiocchi²¹² and Fausto Catena¹⁰¹

Abstract

Background Literature suggests colonic resection and primary anastomosis (RPA) instead of Hartmann's procedure (HP) for the treatment of left-sided colonic emergencies. We aim to evaluate the surgical options globally used to treat patients with acute left-sided colonic emergencies and the factors that leading to the choice of treatment, comparing HP and RPA.

Methods This is a prospective, international, multicenter, observational study registered on ClinicalTrials.gov. A total 1215 patients with left-sided colonic emergencies who required surgery were included from 204 centers during the period of March 1, 2020, to May 31, 2020. with a 1-year follow-up.

Results 564 patients (43.1%) were females. The mean age was 65.9 ± 15.6 years. HP was performed in 697 (57.3%) patients and RPA in 384 (31.6%) cases. Complicated acute diverticulitis was the most common cause of left-sided colonic emergencies (40.2%), followed by colorectal malignancy (36.6%). Severe complications (Clavien-Dindo ≥ 3b) were higher in the HP group (P < 0.001). 30-day mortality was higher in HP patients (13.7%), especially in case of bowel perforation and diffused peritonitis. 1-year follow-up showed no differences on ostomy reversal rate between HP and RPA. (P = 0.127). A backward likelihood logistic regression model showed that RPA was preferred in younger patients, having low ASA score (≤ 3), in case of large bowel obstruction, absence of colonic ischemia, longer time from admission to surgery, operating early at the day working hours, by a surgeon who performed more than 50 colorectal resections.

Conclusions After 100 years since the first Hartmann's procedure, HP remains the most common treatment for left-sided colorectal emergencies. Treatment's choice depends on patient characteristics, the time of surgery and the experience of the surgeon. RPA should be considered as the gold standard for surgery, with HP being an exception.

Keywords Hartmann's procedure, Ostomy, Emergency surgery, Resection, Primary anastomosis, Left side, Colon, Diverticulitis, Colorectal cancer

Introduction

The Hartmann's procedure (HP) is a rapid, simple surgical procedure, with relatively low perioperative morbidity and mortality. It was first described in 1921 as a solution for obstructed left-sided colonic carcinomas. Hartmann's procedure consists of 3 steps: (1) resection of a diseased segment of the colon near the rectosigmoid junction, (2) closure of the distal rectal stump and (3) formation of an end colostomy [1-3].

During early 1900s three staged approach (first stage, diverting colostomy; second stage, resection of the diseased colon; third and last stage, colostomy closure) was the most common treatment for left-sided colonic diseases. Since the second half of the last century thanks to the discovery of antibiotics, the surgical practice changed, enabling surgeons to control postoperative infections and HP started to be used [4].

HP showed better outcomes than three-stage surgery due to less postoperative peritonitis, fewer reoperations, and lower mortality. In the 1980s and 1990s, different studies favored HP, becoming the first-line treatment for left-sided colonic emergencies [5, 6] However, in the last 2 decades, the role of HP has been questioned compared with colonic resection and primary anastomosis. [7, 8] There was no difference in major postoperative complications and mortality between these two procedures [8–10]. Furthermore, the presence of fecal peritonitis was no longer considered an absolute contraindication for immediate bowel continuity reconstruction. [6–10]

Furthermore, only few patients get their stoma reversed after HP. Hartmann's reversal is also associated with high morbidity rates up to 58% and mortality up to 3.6%, with non-reversal rate ranging from 23 to 74% [11].

Despite the growing evidence supporting primary anastomosis for left-sided colonic emergencies, many surgeons are still reluctant to follow this evidence. The main concern is the anastomotic leakage which can be disastrous, especially in sick patient, leading to medicolegal implications. Other factors may affect the choice of HP over other treatment, most of these procedures are typically performed beyond normal working hours, and often by young surgeons. [12–14]

The Goodbye Hartmann Trial aimed to evaluate the surgical options globally used to treat patients with acute left-sided colonic emergencies and the factors impacting treatment choice, comparing HP and RPA.

Methods

Study design

This study was a multicenter, prospective, observational study done in 204 hospitals from 31 different countries in 5 continents.

The study was developed and presented, according to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines. The study was conducted in accordance with the principles of the Declaration of Helsinki and Good Epidemiological Practices [15].

The study was approved by an independent ethical committee (Comitato etico AVEN – area vasta Emilia nord) and by the local ethical committees of all participating centers. Written informed consent was obtained from all patients. The participating surgeons performed their duties according to their usual practices.

The Goodbye Hartmann Trial was registered in ClinicalTrials.gov (ID: NCT04829032).

Data were collected and managed using REDCap electronic data capture tools hosted at Parma University Hospital. [16, 17] The recruitment period lasted 3 months (March 1 2021, to May 31 2021).

No patient's identifiable data (name, date of birth, address, telephone number, etc.) were recorded.

Patient selection criteria

Inclusion criteria: patients aged between 18 and 100 years; diagnosis of left-sided (splenic flexure, descending colon and sigmoid colon) colonic emergency (perforated diverticulitis with purulent or fecal peritonitis; large bowel perforation-obstruction; colon cancer perforation-obstruction; ischemic colitis; abdominal trauma); surgical treatment with RPA, HP, ileostomy or colostomy.

Exclusion criteria: patients ineligibile for surgery, hemodynamically unstable patients, defined as patients with an abnormal or unstable blood pressure that resulted in tissue hypoperfusion; patients with left-sided colonic emergency managed with non-surgical treatment; patients with previous colorectal surgery; patients with concomitant non colonic emergencies.

Variables and definitions

Demographic data and baseline characteristics: age, gender, BMI, comorbidities, ASA score, previous abdominal surgery, Glasgow Coma Scale, quick Sequential Organ Failure Assessment score (qSOFA) [18], symptoms. Vital parameters: temperature, systolic blood pressure, respiratory rate. Laboratory data: white cell blood count (WBC), blood hemoglobin concentration, C-reactive protein (CRP). Disease characteristics: etiology (acute complicated diverticulitis, colorectal cancer, colon ischemia, abdominal trauma, foreign bodies, volvulus, intussusception); preoperative diagnosis and assessment was performed according to the clinical practice of each center, CT scan of the abdomen was always performed in case of diverticulitis and the severity was assessed according to 2015 CT driven classification of left colon acute diverticulitis [19]; clinical presentation (perforation, obstruction, ischemia).

Surgical details: Hartmann's procedure (HP), colonic resection with primary anastomosis with or without diverting stoma (RPA), stoma without colonic resection.

Hospital characteristics: hospital type, annual volume of emergency surgical procedures; annual volume of surgical left-sided colonic disease; availability of Intensive Care Unit (ICU)). Surgeon's experience. Time of surgery: weekdays, weekend, bank holidays, night shift. Postoperative outcomes: length of stay (LOS), Clavien-Dindo Classification, reoperation, anastomotic leakage. Follow-up data was collected in all patients at 1 year after the index admission, including data on subsequent stoma reversal and related complications.

Outcomes

The primary objective was to analyze the factors leading to the surgical choice.

Secondary aims included defining the rate of Hartmann's procedure reversal and the rate of permanent stoma after 1 year of follow-up.

Statistical analysis

Patients were divided into three main groups: patients who underwent Hartmann's procedure; patients who underwent colonic resection with primary anastomosis with or without ileostomy; and patients who underwent only ostomy (ileostomy or colostomy) without colonic resection, according to the most common treatment performed in left-sided colonic emergencies. Subgroup analysis was performed for patients with colorectal

cancer and those with complicated acute diverticulitis. Quantitative data was expressed as mean (SD) or median and interquartile range (IQR, minimum and maximum values). The qualitative data were presented as absolute frequencies, relative frequencies, cumulated frequencies, and percentages. Student's t test, Mann Whitney U test or ANOVA were used for comparisons of continuous or ordinal variables among groups as appropriate. Chisquared test or Fisher's exact test, as appropriate, was used for analysis of categorical data.

A logistic regression model defining the factors affecting the decision to do primary anastomosis was performed. The patients were divided into two groups: those who had resection and primary anastomosis of the

colon (n=384) and those who had Hartman's procedure or ostomy alone (n=831). Variables who had a loose p value of less than 0.1 were entered into a backward Stepwise (Likelihood Ratio) logistic regression model defining factors affecting the decision to perform resection and primary anastomosis of the colon. Data analysis was performed using IBM SPSS Statistics 26.0. A p value of less than 0.05 was accepted as significant.

Results

Baseline patient characteristics

A total 1307 patients were included in the study.

Complete data were available in 1215 (92.9%) patients. HP was performed in 697 (57.3%) patients, RPA in 384

Table 1 Baseline characteristics

Variable	Total	HP group	RPA group	Ostomy group	P value
Age—mean ± SD	65.8 ± 15.6	68.7 ± 15.0	61.7 ± 14.9	62.5 ± 17.5	<.001
Female sex—N. (%)	557 (45.9%)	331 (47.5%)	168 (43.8%)	58 (43.6%)	0.431
Body Mass Index (BMI)—Mean ± SD	26.5 ± 4.9	26.5 ± 5.2	26.8 ± 4.4	25.7 ± 4.9	0.123
ASA—N. (%)					<.001
1	144 (11.9%)	71 (10.2%)	55 (14.3%)	18 (13.6%)	
2	451 (37.3%)	214 (30.8%)	189 (49.4%)	48 (36.3%)	
3	451 (37.3%)	274 (39.5%)	128 (33.5%)	49 (37.1%)	
4	138 (11.4%)	113 (16.3%)	10 (2.6%)	15 (11.3%)	
5	23 (1.9%)	21 (3.0%)	0 (0.0%)	2 (1.5%)	
Previous abdominal surgery—N. (%)	373 (30.9%)	220 (31.6%)	118 (30.7%)	35 (26.3%)	0.480
Fever—N. (%)	285 (23.4%)	193 (28.9%)	71 (19.3%)	21 (16.1%)	<.001
qSOFA score ≥ 2—N. (%)	142 (11.6%)	105 (15.0%)	26 (6.7%)	11 (8.2%)	<.001
WBC (10^9/L)—Mean±SD	12.8 ± 7.8	13.3 ± 9.2	12.0 ± 4.8	12.6 ± 6.6	0.048
HB—mean±SD	12.3 ± 3.6	12.2 ± 4.2	12.7 ± 2.7	11.7 ± 2.1	0.021
CRP—mean±SD	85.1 ± 88.9	93.4 ± 93.1	73.6 ± 81.8	70.7 ± 78.0	0.001

HP, Hartmann's procedure; RPA, primary anastomosis

Table 2 Disease types and clinical presentation

Variable	Total	HP group	RPA group	Ostomy group	P value
Etiology					
Complicated Acute Diverticulitis	490 (40.3%)	304 (43.6%)	168 (43.7%)	18 (13.4%)	<.001
CRC	445 (36.6%)	229 (32.8%)	154 (40.1%)	62 (46.2%)	0.003
Sigmoid volvulus	55 (4.5%)	31 (4.4%)	16 (4.1%)	8 (5.9%)	0.681
Foreign body	21 (1.7%)	14 (2.0%)	7 (1.8%)	0 (0.0%)	0.833
Trauma	21 (1.7%)	7 (1.0%)	8 (2.0%)	6 (4.4%)	0.015
Intussusception	5 (0.4%)	2 (0.2%)	1 (0.2%)	2 (1.4%)	0.117
Other cancer	15 (1.2%)	5 (0.7%)	2 (0.5%)	8 (5.9%)	< .001
Other	163 (13.3%)	105 (15.0%)	28 (7.2%)	30 (22.3%)	<.001
Clinical presentation					
Large bowel perforation	694 (57.1%)	455 (65.5%)	201 (28.9%)	38 (5.4%)	<.001
Large bowel obstruction	527 (43.7%)	255 (37.0%)	189 (49.2%)	83 (62.4%)	<.001
Colonic Ischemia	119 (9.9%)	91 (13.2%)	13 (3.4%)	15 (11.1%)	<.001

(31.6%) cases and ostomy (ileostomy or colostomy) without bowel resection in 134 (11.0%) patients.

The baseline characteristics of the study cohort stratified according to the surgical procedure are reported on Table 1.

Disease characteristics

Acute complicated diverticulitis (ACD) and colorectal cancer (CRC) were the most common causes of left-sided colonic emergencies. CRC and ACD patients' characteristics are reported in Appendix 1 and 2.

HP was performed mostly in presence of large bowel perforations (455/694, 65.5%). RPA was performed prevalently in large bowel obstruction (189/384 (49.2%) (P<0.001), Table 2.

In patients with large bowel perforation HP was preferred especially in patients with ASA score \geq 3 (OR=1.49; P=0.002), within 12 h from hospital admission (OR=0.64; P=0.047) and during nighttime (OR=1.73; P=0.013).

In patients with large bowel obstruction, HP was preferred in patients with ASA score ≥ 3 (OR=1.32; P=0.028), within 12 h from hospital admission (OR=0.65; P=0.029), during nighttime (OR=2.16; P=0.000) and in centers with low volume of emergency surgical procedures (OR=0.62; P=0.023).

Time of surgery

HP was generally performed within 12 h from hospital admission in 396 (56.7%) patients Conversely, the 40.1% of RPA cases were performed after 24 h from hospital admission (P<0.001).

Hospital's characteristics didn't affect the time from hospital admission to surgery (P=0.285).

During weekends, HP was the most performed procedure (178/270, 65.9%). RPA was performed only in 64/270 patients (23.7%) during weekends (P=0.025).

HP distribution during daytime and nighttime was similar with the 51.5% of HP performed during the day and the 48.5% during the night (from 8 pm to 7am). Conversely, most of RPA (73.4%) were performed during the day and only the 26.6% of RPA during the night (P<0.001).

HP was the most common treatment during weekends and nighttime also in patients with low ASA score. During the weekends and the nighttime, the 59.3% and 62.2% of ASA < 3 patients respectively underwent HP against the 44.7% of weekdays and 39.6% of daytime (P=0.013) (Table 3).

Surgical approach

Laparotomy was the most common surgical approach (n=985, 81.1%). Among the different surgical procedures, 623 (89.5%) HP and 110 (82.0%) ostomies were performed via laparotomy. Laparoscopic colonic resection with primary anastomosis was the most common laparoscopic procedure (127/233, 54.5%) (P<0.001). Peculiarly, 80.7% of laparoscopic procedures were performed during daytime (P<0.001). During nighttime, laparoscopy was performed only in 43/478 (8.9%) patients, 28 (12.5%) during early night and only in 15 (6.7%) in late night. Robotic surgery was attempted 6 times (0.49%), only one patient underwent robotic HP while the other five underwent robotic RPA.

Table 3 Time of surgery

Variable	Total	HP group	RPA group	Ostomy group	P value
Time from hospital admission to	surgery				<.001
Less than 1 h	37 (3.0%)	25 (3.5%)	8 (2.0%)	4 (2.9%)	
Between 1 and 6 h	402 (33.1%)	255 (36.6%)	99 (25.8%)	48 (35.8%)	
From 6 to 12 h	213 (17.5%)	141 (20.2%)	54 (14.0%)	18 (13.4%)	
From 12 to 24 h	169 (13.9%)	90 (12.9%)	68 (17.7%)	11 (8.2%)	
After 24 h	392 (32.3%)	185 (26.5%)	154 (40.2%)	53 (39.5%)	
Day of surgery					0.025
Weekday	926 (76.2%)	507 (72.7%)	314 (81.7%)	105 (78.3%)	
Weekend	270 (22.2%)	178 (25.5%)	64 (16.6%)	28 (20.8%)	
Public holiday	18 (1.4%)	12 (1.7%)	5 (1.3%)	1 (0.7%)	
Time of surgery					<.001
Day: 7 am-8 pm	735 (60.4%)	359 (51.5%)	282 (73.4%)	94 (70.1%)	
Early night: 8 pm-11 pm	241 (19.8%)	157 (22.5%)	62 (16.1%)	22 (16.4%)	
Late night: 11 pm-7am	238 (19.6%)	181 (25.9%)	39 (10.1%)	18 (13.4%)	

Table 4 Surgeon and center characteristics

Variable	Total	HP group	RPA group	Ostomy group	P value
Surgeon's experience					<.001
> 50 colorectal resections	901 (74.1%)	497 (55.1%)	322 (35.7%)	82 (9.1%)	
< 50 colorectal resections	314 (25.8%)	200 (63.6%)	62 (19.7%)	52 (16.5%)	
> 10 colorectal resections per year in the last 5 years	871 (71.6%)	491 (56.3%)	303 (34.7%)	77 (8.8%)	<.001
< 10 colorectal resections per year in the last 5 years	330 (27.1%)	199 (60.3%)	77 (23.3%)	54 (16.3%)	
Center characteristics					0.004
Academic	568 (47.2%)	313 (45.4%)	180 (47.2%)	75 (56.3%)	
Trauma Center	112 (11.8%)	73 (10.6%)	33 (8.6%)	6 (4.5%)	
Non-Trauma Center	535 (41.0%)	311 (44.0%)	171 (44.2%)	53 (39.2%)	
Presence of Intensive Care Unit (ICU)?	1198 (98.5%)	683 (99.1%)	374 (97.6%)	131 (98.4%)	0.170
Annual volume of emergency surgical procedures					0.005
< 500	265 (22.0%)	155 (58.4%)	82 (30.9%)	28 (10.5%)	
Between 500 and 1000	466 (38.7%)	290 (62.2%)	133 (28.5%)	43 (9.2%)	
> 1000	473 (39.2%)	244 (51.5%)	167 (35.3%)	62 (13.1%)	
Annual volume of elective colorectal resections					0.245
< 50	72 (5.9%)	41 (56.9%)	21 (29.1%)	10 (13.8%)	
Between 50 and 100	386 (32.0%)	237 (61.3%)	109 (28.2%)	40 (10.3%)	
>100	747 (61.9%)	412 (55.1%)	252 (33.7%)	83 (11.1%)	

Surgeon and center characteristics

Inexperienced surgeons performed more HP and ostomies than RPA compared with experienced surgeons (P < 0.001). Inexperienced surgeons performed less laparoscopic procedures (12.6%) than experienced surgeons (20.6%) (P = 0.041). Inexperienced surgeons also performed 50.1% of operations during nighttime (11 pm to 7 pm). Notably the 29.9% of all surgical procedures took place in the late night (from 11 pm to 7 am). While experienced surgeons performed 35.4% of operations during nighttime and only 16.1% during late night (P = 0.002).

The distribution and types of surgical procedures were similar across the hospitals, regardless of origin country. Most of the RPA cases were performed in hospitals with high volume of emergency surgical procedures. (P=0.005). The surgeon and center characteristics are summarized on Table 4.

Postoperative outcomes

Length of stay (LOS) was higher in HP group $(13.4\pm12.1$ days) compared with the RPA group $(11.7\pm10.2$ days) (P=0.048).

LOS was higher in patients treated with laparotomy $(13.4 \pm 11.8 \text{ days})$ compared to patients treated with laparoscopic approach $(9.8 \pm 7.0 \text{ days})$. (P < 0.001).

Postoperative complications were higher in patients who underwent HP (P < 0.001).

Table 5 Postoperative outcomes

- and - consequence						
Variable	Total	HP group	RPA group	Ostomy group	P value	
LOS—mean±SD	12.7 ± 11.1	13.4 ± 12.1	11.7 ± 10.2	12.0 ± 8.4	0.048	
Complications	554 (46.7%)	352 (51.9%)	146 (38.8%)	56 (42.1%)	<.001	
Clavien-Dindo classification					0.002	
1	237 (32.2%)	129 (19.3%)	86 (23.8%)	22 (17.0%)		
2	246 (20.5%)	151 (22.6%)	72 (20.0%)	23 (17.8%)		
3a	46 (3.9%)	29 (4.3%)	13 (3.6%)	4 (3.1%)		
3b	89 (7.6%)	46 (6.8%)	32 (8.8%)	11 (8.5%)		
4a	31 (2.6%)	21 (3.1%)	7 (1.9%)	3 (2.3%)		
4b	19 (1.6%)	10 (1.4%)	7 (1.9%)	2 (1.5%)		
30-day mortality	115 (9.9%)	92 (13.7%)	9 (2.5%)	14 (10.8%)	<.001	

Table 6 1-year follow-up of patients with ostomy

Variable	Total	HP group	RPA group	Ostomy group	P value
Permanent stoma	760 (82.9%)	430 (78.3%)	22 (6.6%)	77 (76.2%)	<.001
Surgery for ostomy reversal	198 (21.6%)	119 (21.6%)	55 (64.7%)	24 (23.7%)	<.001
Complication during reversal surgery	30 (15.1%)	19 (15.9%)	6 (10.9%)	5 (20.8%)	0.041

Table 7 The backward stepwise (likelihood ratio) logistic regression model defining factors affecting the decision to perform resection and primary anastomosis of the colon, 384 resection and primary anastomosis patients compared with 831 Hartman's procedure or ostomy patients

Variable	Estimate	S.E	Wald	P value	OR	OR 95% C.I lower limit	OR 95% C.I. upper limit
Age	-0.02	0.006	10.484	0.001	0.98	0.968	0.992
ASA Classification	-0.45	0.108	17.026	<.001	0.641	0.519	0.792
Large bowel obstruction	0.41	0.169	5.792	0.016	1.501	1.078	2.091
Colonic ischemia	-1.02	0.361	7.911	0.005	0.362	0.178	0.735
Time from admission to surgery	0.23	0.066	12.210	< 0.001	1.260	1.107	1.434
Earlier Time of day	-0.26	0.115	5.083	0.024	0.771	.615	0.967
Surgeon Experience (> 50 colorectal resections)	0.67	0.202	10.865	<.001	1.948	1.310	2.897
Constant	0.66	0.510	1.651	0.199	1.926		

OR, odds ratio; SE, standard error; CI, confidence interval

Severe complications (Clavien-Dindo \geq 3b) were higher in HP group (P<0.001).

Severe complications in ASA score < 3 were lower in RPA group than HP group, also in case of perforation and diffuse peritonitis (P=0.017).

Severe complications in patients with ASA score > 3 were similar in both HP and RPA groups. (P > 0.05).

Severe complications were higher in high-risk patients (diffuse peritonitis, qSOFA score \geq 2) with ASA score \geq 3 (P=0.002).

Mortality was significantly higher in patients with bowel perforation and diffused peritonitis (P<0.001).

Anastomotic leakage was reported in 46 patients (11.9%). Conservative treatment of anastomotic leakage was effective in 10 patients (21.6%), in the other 36 cases, surgery was required to manage anastomotic leak (78.4%).

Postoperative outcomes are summarized in Table 5.

Follow-up

Only 21.6% of HP patients underwent surgery for ostomy reversal during the 1-year follow-up, against the 64.7% of RPA patients. Complication rate after ostomy reversal was higher in the HP groups (P=0.41). Anastomotic leakage was 7.5% in HP group compared with the 9.0% in RPA group (P>0.05). Permanent stoma was reported in 430 (78.3%) cases in HP group, similar to the ostomy

group with 77 cases (76.2%). In the RPA group only 22 (6.6%) patients had a stoma after 1-year from surgery (P<0.001) (Table 6).

Primary aim: which factors influence the choice of HP and RPA?

The logistic regression model was made dividing patients into 2 groups: primary anastomosis of the colon (n=384) and Hartman's procedure or ostomy alone (n=831).

The logistic regression model was highly significant (P < 0.001) having a Nagelkerke R Square of 0.2.

The analysis predicted several factors that contributed to performing RPA instead of HP. (Table 7).

The choice of surgical procedure is related to patient's factors, etiology, hospital setting and surgeon's characteristics.

RPA was preferred in younger patients, having low ASA score (\leq 3), in case of large bowel obstruction, absence of colonic ischemia, longer time between admission and surgery, operating early at the day working hours, and by a surgeon who performed more than 50 colorectal resections.

In contrast, HP was the preferred procedure in patients with ASA score status ≥ 3 , qSOFA score ≥ 2 , in case of large bowel perforation, in low volume hospitals, within 12 h from hospital admission, performed by inexperienced surgeons and during the night.

Discussion

The results of this study showed that HP remains the most common surgical procedure for colorectal emergencies. Several factors may be related to HP choice. Regression model analysis showed that HP was preferred in low volume hospitals, by inexperienced surgeons, during the night, in older patients, large bowel perforation, colonic ischemia, and patients having ASA score \geq 3 and qSOFA score \geq 2.

Typically, the greatest concern against RPA in the treatment of colorectal emergency was anastomotic leakage which ranged from 3.5 to 30% in emergency surgery. [9, 10, 20] In this study anastomotic leakage after RPA was 11.9% out of whom 78.4% required surgery.

In the last decades several studies evidenced no difference in major postoperative complications and mortality between HP and RPA, [7, 9, 12, 14, 21] as also reported in the present study. Furthermore, recent literature showed better postoperative outcome and reduced mortality after RPA even in large bowel perforations with generalized purulent or fecal peritonitis. [9, 10, 22]

The results of the study confirm literature findings, severe complications were 40% higher in HP group than RPA group (25% compared with 10%), the 30-day mortality was 5 times more in HP (13.7% compared with 2.5% of RPA).

Another factor in favor of RPA, as reported in several studies, was the better stoma-free survival compared with the HP patients [9, 10, 20, 23]. In the present study ostomy reversal after 1-year follow-up was only 25% in HP patients compared to the 64.7% in RPA group.

Furthermore, complications after ostomy reversal were 30% higher in the HP group compared to the RPA group (15.9% vs 10.9%) in the present study. Literature findings showed higher morbidity and anastomotic leak rate of Hartmann's reversal surgery which ranges from 20 to 50% compared with 2 to 7% in RPA [22, 24–27].

Despite these factors in favor of RPA, usually HP patients have more comorbidities and worse clinical presentation compared to RPA patients [28–31]. In this study Hartmann's procedure was performed mainly in cases of large bowel perforation, ASA score \geq 3, and qSOFA score \geq 2.

Hospitals with high volume of emergency surgery (more than 1000 procedures per year) performed less HP procedures (51.5%) compared to small (58.4%) and medium (62.2%) volume hospitals. The lack of some services (24-h specialist coverage and an on-site CT scanner) could contribute to these differences. [32–34]

Surgical experience, early decision, and faster time to emergency surgery affected the intraoperative surgical errors and clinical outcome. During the night, indication for surgery was usually made by those who do not make the surgery [35–37]. In the present study, most surgical operations (73.6%) were performed by experienced surgeons who have done more than 50 colorectal resections. The 63.4% of surgical procedures performed by inexperienced surgeons, were mainly HP, with only 19.8% being RPA. Conversely, experienced surgeons performed HP in 55.1% of the cases and RPA in 35.8%. Inexperienced surgeons performed less laparoscopic procedures (12.6%) compared with experienced surgeons (20.6%) without a difference in morbidity and mortality. These findings were driven by several factors.

65.7% of patients with ASA score status \geq 3 and 47.8% of ASA score <3 patients were treated with HP. ASA score status > 3 has been reported as independent risk factor for postoperative complications, especially in highrisk patients with bowel perforation and diffuse peritonitis [38–40].

Similar severe complications after HP and RPA in ASA score status > 3 were reported in this study. RPA patients with ASA score ≤ 3 showed better postoperative outcomes than HP patients.

RPA was suggested in patients with ASA score=3 and HP in high-risk patients (diffuse peritonitis, qSOFA score \geq 2) with ASA score=3.

HP was performed in ASA score ≤ 3 especially during weekends and nighttime. Several HP performed during weekends (59.3%) and nighttime (62.2%) could be avoided in favor of RPA due to the better postoperative outcomes.

16.8% of patients treated during late night had qSOFA score ≥ 2, whilst only 9.1% of patients treated during day-time had qSOFA score > 2. High qSOFA score was associated with organ dysfunction and a mortality of more than 10% which favored the HP procedure. [41, 42]

Laparoscopy was performed in 25.2% of the procedures during daytime, and only in 6.7% during the night. LOS was lower in patients treated with laparoscopy which favor minimally invasive surgery even in emergency surgery [43, 44]. Robotic surgery, although performed in few patients, reflects the increased interest in this approach in emergency surgery [45, 46] which should be properly assessed in future studies despite its limitations.

Performing randomized clinical trials comparing HP and RPA can be challenging. The results of this study supported the use of RPA although HP as a treatment of left-sided colonic emergencies is still a viable option. Nevertheless, we must acknowledge that results carried the risk of selection bias depending on the clinical status of the patient, the experience of the surgeon, the setting of the hospitals, including available technologies (robot, SEMS [47], 24-h specialist coverage and an onsite CT scanner) and time in which surgery was done.

Conclusions

HP remains the most common treatment for left-sided colorectal emergencies. Selection of the type of surgery depends on the time of surgery, the experience of the surgeon, and patient characteristics. The study supports the use of RPA which should be considered as the gold standard for surgery, with HP being an exception. Several factors contributed to the choice of HP over RPA but they are not often related to higher postoperative outcomes.

The RPA was preferred in younger patients age, having low ASA score (\leq 3), in case of large bowel obstruction, absence of colonic ischemia, longer time between admission and surgery, operating early at the day working hours, by a surgeon who performed more than 50 colorectal resections.

Appendix 1Colo-rectal cancer emergencies characteristics (N = 445).

Variable	HP group (n = 229)	RPA group (n = 154)	Ostomy group (n = 62)	P value
Age— mean±SD	68.0 ± 14.2	65.6 ± 13.9	64.5 ± 15.5	0.119
Female sex—N. (%)	95 (41.6%)	62 (40.5%)	24 (39.3%)	0.940
ASA—N. (%)				0.004
1	25 (10.9%)	18 (11.8%)	8 (13.1%)	
2	94 (41.2%)	80 (52.6%)	24 (39.3%)	
3	76 (33.3%)	52 (34.2%)	25 (40.9%)	
4	27 (11.8%)	2 (1.3%)	4 (6.5%)	
5	6 (2.6%)	0 (0.0%)	0 (0.0%)	
qSOFA score ≥ 2- N. (%)	26 (11.3%)	10 (6.4%)	1 (1.6%)	0.029
Clinical presenta	tion			
Large bowel perforation	88 (38.4%)	26 (16.8%)	8 (12.9%)	< 0.001
Large bowel obstruction	141 (61.5%)	128 (83.1%)	54 (87.0%)	< 0.001
Colonic Ischemia	12 (5.3%)	9 (5.9%)	1 (1.6%)	0.404
Abdominal appr	oach			
Laparoscopy	14 (6.1%)	33 (21.4%)	8 (12.9%)	< 0.001
Laparotomy	215 (93.8%)	119 (77.2%)	54 (87.0%)	
Time from hospi 0.006	tal admission to	surgery		
Within 12 h	140 (61.1%)	65 (42.2%)	28 (45.1%)	
After 12 h	89 (38.8%)	89 (57.7%)	34 (61.2%)	
Time of surgery				
Weekend	52 (22.7%)	31 (20.1%)	13 (20.9%)	0.804

Variable	HP group (n = 229)	RPA group (n=154)	Ostomy group (n = 62)	P value
Early night: 8 pm–11 pm	47 (20.5%)	25 (16.2%)	7 (11.2%)	< 0.001
Late night: 11 pm–7 am	49 (21.3%)	13 (8.4%)	8 (12.9%)	
Surgeon's experie	nce			
> 50 colorectal resections	176 (76.8%)	139 (90.2%)	39 (62.9%)	< 0.001
Center annual vo	olume of emergen	cy surgical proced	dures	
> 1000	83 (36.4%)	85 (55.1%)	26 (42.6%)	0.005
Center annual vo	olume of elective of	colorectal resection	ns	
> 100	149 (65.0%)	110 (71.4%)	44 (70.9%)	0.278
Postoperative ou	tcomes			
LOS— mean±SD	11.2±6.9	10.3 ± 6.6	11.8 ± 8.6	0.289
Complications	109 (48.4%)	51 (33.5%)	22 (36.0%)	0.010
Clavien- Dindo≥3b	47 (20.5%)	22 (14.2%)	10 (16.1%)	0.018
30-day mortal- ity	25 (11.0%)	3 (2.0%)	4 (6.6%)	0.002
1-year follow-up				
Permanent stoma	131 (40.4%)	12 (36.3%)	37 (67.2%)	< 0.001
Surgery for ostomy reversal	33 (33.6%)	20 (60.6%)	13 (20.0%)	< 0.001
Complication during reversal surgery	5 (15.1%)	3 (15.0%)	2 (15.3%)	0.791

Appendix 2

Complicated acute diverticulitis characteristics (N=490).

Variable	HP group	RPA group	P value
	(n=304)	(n = 168)	
Age—mean±SD	69.1 ± 14.7	60.0 ± 13.2	< 0.001
Female sex—N. (%)	156 (51.3%)	77 (45.8%)	0.255
ASA—N. (%)			< 0.001
1	29 (9.5%)	25(14.1%)	
2	77 (25.4%)	78 (46.4%)	
3	140 (46.2%)	61 (36.3%)	
4	50 (16.5%)	4 (2.3%)	
5	7 (2.3%)	0 (0.0%)	
qSOFA score≥2- N. (%)	39 (12.8%)	8 (4.7%)	0.005
Clinical presentation			
Large bowel perforation	280 (92.7%)	146 (88.4%)	0.123
Large bowel obstruction	29 (9.6%)	24 (14.3%)	0.125
Colonic Ischemia	14 (4.6%)	1 (0.5%)	0.017

Variable	HP group (n=304)	RPA group (n = 168)	P value
Abdominal approach	1		
Laparoscopy	42 (13.8%)	78 (46.4%)	< 0.001
Laparotomy	260 (85.8%)	87 (51.7%)	
Time from hospital ac	dmission to surgery		0.013
Within 12 h	187 (61.5%)	67 (39.8%)	
After 12 h	117 (38.4%)	101 (60.1%)	
Time of surgery			
Weekend	83 (27.3%)	20 (11.9%)	< 0.001
Early night: 8 pm–11 pm	70 (23.0%)	28 (16.7%)	< 0.001
Late night: 11 pm– 7am	81 (26.6%)	17 (10.1%)	
Surgeon's experience			
> 50 colorectal resections	211 (69.4%)	134 (79.7%)	0.015
Center annual volum	e of emergency surg	gical procedures	
> 1000	86 (28.7%)	51 (30.5%)	0.864
Center annual volum	e of elective colorec	tal resections	
> 100	154 (51.5%)	101 (60.4%)	0.275
Postoperative outcon	nes		
LOS—mean±SD	14.0 ± 11.6	12.3 ± 9.2	0.108
Complications	155 (52.3%)	66 (40.0%)	0.011
Clavien-Dindo≥3b	66 (21.7%)	25 (14.8%)	0.007
30-day mortality	34 (11.9%)	3 (1.9%)	< 0.001
1-year follow-up			
Permanent stoma	131 (51.9%)	6 (14.2%)	< 0.001
Surgery for ostomy reversal	69 (29.3%)	30 (71.4%)	< 0.001
Complication during reversal surgery	12 (17.3%)	2 (6.6%)	0.027

Chief Investigators

Fausto Catena, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy. Mario Giuffrida, Department of General Surgery, Ospedale Guglielmo da Saliceto, Piacenza, Italy.

Gennaro Perrone, Department of Emergency Surgery, Maggiore Hospital, Parma, Italy.

Working group

Mario Giuffrida, Gennaro Perrone, Fikri Abu-Zidan, Elena Bonati, Brian WCA Tian. Fausto Catena.

Statistical analysis

Mario Giuffrida, Fikri Abu-Zidan.

Goodbye Hartmann Trial Local Principal Investigators

Ricardo Mentz, Elisabeth Gasser, Daniel M. Felsenreich, Carlos Augusto Gomes, Ricardo Alessandro Teixeira Gonzaga, Bruno Monteiro Pereira, Gustavo P. Fraga, Vinicius Cordeiro-Fonseca, Boyko Atanasov, L. Juan José Meléndez, Ana Dimova, Goran Augustin, Elie Chouillard, Yves Panis, Margherita Notarnicola, Venara Aurélien, Zaza Demetrashvili, Konstantinos Bouliaris, Sofia Xenaki, Panteleimon Vassiliu, Aristotelis Kechagias, Eftychios Lostoridis, Francesk Mulita, Athanasios Marinis, Dimitrios K. Manatakis, Sotiropoulou Maria, Dimitrios Korkolis, Thalia Petropoulou, Tania Triantafyllou, Konstantinos Toutouzas,

Dimitrios Schizas, Alexandros Charalabopoulos, Orestis Ioannidis, Ioannis Tsouknidas, Lovenish Bains, Rahul Gupta, Miklosh Bala, Marcello Pisano, Gennaro Martines, Antonino Agrusa, Massimiliano Veroux, Luigi Oragano, Carlo V. Feo, Giulio Lantone, Leonardo Vincenti, Stefano Rossi, Diego Visconti, Giusto Pignata, Massimo Buonfantino, Gianluca Matteo Sampietro, Alice Frontali, Giuseppe Manca, Massimiliano Casati, Giorgio Ercolani, Gianluca Guercioni, Diego Sasia, Giuseppe Sena, Giuseppe Portale, Marialusia Esposito, Romina Manunza, Emanuele Luigi Giuseppe Asti, Davide Luppi, Angela Pezzolla, Maurizio De Luca, Elio Jovine, Giovanni Aprea, Giulio Argenio, Marina Troian, Alan Biloslavo, Igor Monsellato, Gabriele Anania, Gabriele Sganga, Paolo Boati, Pasquale Cianci, Nicola Cillara, Gabriela Elisa Nita, Francesco Roscio, Stefano Berti, Luigi Conti, Marina Pighin, Giovanni Gambino, Daniela Prando, Luca Ansaloni, Norma Depalma, Luca Lepre, Giuliano Sarro, Stefano Olmi, Marco Inama, Francesco Favi, Andrea Barberis, Luigi Totaro, Gabriella Teresa Capolupo, Maurizio Ronconi, Desire Pantalone, Marco Ceresoli, Federico Zanzi, Francesca Lecchi, Rosa Scaramuzzo, Nicola Tartaglia, Gian Marco Palini, Claudio Ricci, Matteo Rottoli, Marco Milone, Micaela Piccoli, Stefano Magnone, Paolo Massucco, Francesco Fleres, Yoshiro Kobe, Robert Parker, Saulius Svagzdys, Tomas Poskus, Andee Dzulkarnaen Zakaria, Asri Che Jusoh, Daniel Rios Cruz, Edgard Efren Lozada Hernandez, Martha Quiodettis, Piotr Major, Maciej Walędziak, Silvia Dantas da Costa, Filipe Almeida, Diego Pita Perez, Cátia Ferreira, Pedro Leao, Rita Gonçalves Pereira, Maria Isabel Cerqueira Manso, Valentin Calu, Mahir Gachabayov, Andrey Litvin, Taras Nechay, Alison Bradley, Arpád Panyko, Dusan Lesko, Victor Turrado-Rodriguez, Pierfrancesco Lapolla, Maurizio Degiuli, Andrea de Manzoni Garberini, Eduardo Perea del Pozo, Mercedes Estaire-Gómez, José Gil-Martínez, Aida Cristina Rahy-Martin, Fernando Mendoza-Moreno, María Elisa Valle Rodas, Claudia Cristina Lopes Moreira, Ana María González-Castillo, Mario Serradilla-Martín, Daniel Rivera-Alonso, Naila Pagès Valle, Cristina Rey Valcárcel, Juan Jesús Rubio García, Silvia Pérez Farré, Alberto Titos-García, Luis Sánchez-Guillén, Aleix Martínez-Pérez, Granada Jimenez-Riera, Andrea Campos-Serra, Javier Martínez Alegre, Francisco Blanco Antona, Zahira Gómez Carmona, Laura Román García de León, Paola Lora Cumplido, Ignacio Rey Simó, Rafael Calleja Lozano, Javier Tomas Morales Bernaldo de Quiros, Gianluca Pellino, Sami Jalal-Eldin, Varut Lohsiriwat, Oussama Baraket, Ali Ben Ali, Ali Kchaou, Elif Colak, Ali Guner, Baris Mantoglu, Fatih Altintoprak, Arda Isik, Mehmet Bayrak, Yasin Kara, Koray Das, Semra Demirli Atici, Zeynep Ozkan, Mustafa Yener Uzunoglu, Yuksel Altinel, Derya Salim Uymaz, Giovanni D. Tebala, Mansoor Khan, Cosimo Alex Leo, Ivan Trostchansky, Rifat Latifi, Raul Coimbra, George Velmahos, Amanda Palmer, Sirivan Suon Seng, Tanya Egodage, Lena M. Napolitano, Jacob A. Quick, Theodore S. Hyman William Curtiss, Walter L. Biffl.

Author contributions

Conceptualization: FC, GP, MG; methodology: FC, GP, MG; validation: MG; formal analysis: MG, FAZ; data curation: MG; writing—original draft: MG; writing—review & editing; FC, FAZ, BWCAT; supervision: FC, GP. Project administration: FC, GP. All authors participated equally in the data collection and the approval of the final version of the manuscript.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Availability of data and materials

The original dataset generated during the current study is available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

The study has been approved by independent ethics committee (Comitato etico AVEN – area vasta Emilia nord) and by the ethical committee of each participating center. All study participants or their legal guardian provided informed written consent about personal and medical data collection prior to study enrolment.

Competing interests

The author declares no competing interest.

Author details

¹Department of Emergency Surgery, Maggiore Hospital, Parma, Italy. ²General Surgery Unit, Maggiore Hospital, Parma, Italy. ³Department of General Surgery, Ospedale Guglielmo da Saliceto, 29100 Piacenza, Italy. ⁴Department of Surgery, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates. ⁵Division of Trauma Surgery, School of Medical Sciences, University of Campinas, Campinas, Brazil. ⁶General Surgery Department, UO Chirurgia Generale, ASST Cremona, Cremona, Italy. ⁷Department of General Surgery, Singapore General Hospital, Singapore, Singapore. 8General Surgery Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina, ⁹Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria. ¹⁰Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria. ¹¹Faculdade de Medicina, SUPREMA, Hospital Universitario Terezinha de Jesus de Juiz de Fora, Juiz de Fora, MG, Brazil. 12 Medical Course, Department of Surgery - Emergency Surgery and Trauma Sector, Padre Albino University Center, Catanduva, Brazil. ¹³Grupo Surgical, Campinas, Brazil. ¹⁴Hospital Vivalle, São José Dos Campos, Brazil. 15 UMHAT Eurohospital-Plovdiv/Medical University Plovdiv, Plovdiv, Bulgaria. ¹⁶Trauma and Acute Care Surgeon Hospital Rafael Angel Calderón Guardia, San José, Costa Rica. ¹⁷General Hospital Zabok and Croatian War Veteran Hospital Bracak, Zabok, Croatia. 18 Department of Surgery, University Hospital Centre Zagreb, Zagreb, Croatia. 19 Department of General and Bariatric Surgery, American Hospital in Paris, Paris, France. ²⁰Emergency and General Minimally Invasive Surgery, Poissy and St Germain Hospital, Poissy, France. ²¹Department of Emergency and General Minimally Invasive Surgery, Academic Hospital of Villeneuve St Georges, Villeneuve-Saint-Georges, France. ²²Colorectal Center, Groupe Hospitalier Privé Ambroise Paré-Hartmann, Neuilly/Seine, France. ²³Department of Colorectal Surgery, Pôle Des Maladies de L'Appareil Digestif (PMAD), Beaujon Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France. ²⁴Hôpital Henri Mondor, Créteil, France. ²⁵Hôpital Léon Binet, Provins, France. ²⁶Department of Visceral Surgery CHU Angers, 4 Rue Larrey, 49933 Angers Cedex 9, France. ²⁷N.Kipshidze Central University Hospital, Tbilisi, Georgia. ²⁸Surgical Department, General Hospital of Larissa, Larissa, Greece. ²⁹Department of General Surgery - University Hospital of Heraklion Crete, Crete, Greece. 304th Surgical Department "Attikon" University Hospital, Chaidari, Greece. 31 Department of Digestive Surgery, Athens Bioclinic Hospital, Athens, Greece. $^{\rm 32}{\rm Kavala}$ General Hospital, Kavala, Greece. 33 Department of Surgery, General University Hospital of Patras, Patras, Greece. ³⁴Third Department of Surgery, Tzaneio General Hospital, Piraeus, GR, Greece. ³⁵2nd Department of Surgery, Athens Naval and Veterans Hospital, Athens, Greece. ³⁶Evangelismos General Hospital, Athens, Greece. ³⁷Surgical Oncology Department of Agios Savvas Anticancer Hospital of Athens, Athens, Greece. 38 Aretaieio University Hospital, Athens, Greece. ³⁹Department of Surgery, Hippocration General Hospital of Athens, University of Athens, Athens, Greece. ⁴⁰1st Propaedeutic Department of Surgery, Hippocratio Hospital of Athens, Athens, Greece. ⁴¹First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece. ⁴²National and Kapodistrian University of Athens, Athens, Greece. ⁴³4th Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, General Hospital "George Papanikolaou", Thessaloniki, Greece. 442n, Department of Surgery, General Hospital of Chania "St George", Chania, Greece. 45 Department of Surgery, Maulana Azad Medical College, New Delhi, India. 46 Department of Gastrointestinal Surgery, Synergy Institute of Medical Sciences, Dehradun, India. ⁴⁷General Surgery and Trauma Unit Hadassah Hebrew University Medical Center, Jerusalem, Israel. ⁴⁸Chirurgia d'Urgenza Policlinico Universitario di Monserrato Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy. ⁴⁹Chirurgia "M.Rubino" Azienda Ospedaliero Universitaria Policlinico Bari, Bari, Italy. 50 Unit of General and Emergency Surgery, Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University Hospital Policlinico "P. Giaccone, University of Palermo - Palermo, Palermo, Italy. 51 General Surgery Unit and Organ Transplant Unit, University Hospital of Catania, Catania, Italy. 52SOC Chirurgia Generale - ASL VCO (Piemonte), Verbania, Italy. 53Unità Operativa Chirurgia Generale Provinciale Azienda USL di Ferrara, Ferrara, Italy. ⁵⁴Surgery Unit, National Institute of Gastroenterology'S. de Bellis', Research Hospital, Castellana Grotte, BA, Italy. 55 Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari - Dept of Emergency and Organ Transplantation, Bari, Italy. ⁵⁶Department of General and Emergency Surgery, San Filippo Neri Hospital, Rome, Italy. 57 Chirurgia Generale d'Urgenza e PS - AOU Città della Salute e della Scienza di Torino, Presidio San Giovanni Battista - Molinette, Turin, Italy. 58 Chirurgia Generale 2 ASST Spedali Civili di Brescia, Brescia, Italy.

⁵⁹Chirurgia Generale PO Valle d'Itria ASL TA, Martina Franca, Italy. ⁶⁰Unità Operativa di Chirurgia Generale Ospedale di Rho - ASST Rhodense, Milan, Italy. ⁶¹General Surgery Unit, Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, AAST Fatebenefratelli Sacco, Milan, Italy. ⁶²General Surgery Unit, University of Milan, ASST Vimercate, Via Santi Cosma e Damiano 16, 20871 Vimercate, Italy. ⁶³Unità Operativa Complessa di Chirurgia Generale, Presidio Ospedaliero "A. Perrino", Brindisi, Italy. ⁶⁴Ospedale Vittorio Emanuele III Carate Brianza, Carate Brianza, Italy. ⁶⁵UOC Chirurgia Generale e Terapie Oncologiche Avanzate Ospedale Morgagni-Pierantoni AUSLRomagna, Via Carlo Forlanini 34, 47121 Forlì, Italy. ⁶⁶UOC ChirurgiaOspedale Provinciale "C. E G. Mazzoni" Ascoli Piceno, Area Vasta 5, Regione Marche, Italy. ⁶⁷Santa Croce and Carle Hospital, Cuneo, Italy. ⁶⁸Dipartimento di Specialità Chirurgiche, Azienda Ospedaliera "Pugliese-Ciaccio" di Catanzaro, Catanzaro, Italy. ⁶⁹Department of General Surgery, ULSS 6 Euganea, CittadellaPadua, Italy. ⁷⁰Chirurgia Generale Ospedale "Di Venere", Bari, Italy. ⁷¹Chirurgia d'Urgenza ospedale Brotzu – ARNAS, Palermo, Italy. ⁷²University of Milan, IRCCS Policlinico San Donato, Milan, Italy. ⁷³Dipartimento di Chirurgia Generale 2 e D'Urgenza dell'Arcispedale Santa Maria Nuova – Ausl RE IRCCS, Reggio Emilia, ⁷⁴U.O. di Chirurgia Videolaparoscopica della AOU Policlinico di Bari, Bari, Italy. ⁷⁵Department of General Surgery, Santa Maria della Misericordia Hospital, AULSS5 Polesana - Rovigo, Rovigo, Italy. ⁷⁶Chirurgia A e d'Urgenza IRCCS Ospedale Maggiore Bologna Largo, Bartolo Nigrisoli 2, 40133 Bologna, Italy. 77 UOC Chirurgia Endoscopica - AOU Federico II Di Napoli, Naples, Italy. 78 UOC Chirurgia d'Urgenza AOU San Giovanni di Dio e Ruggi d'Aragona, Salerno, Italy. ⁷⁹SC Chirurgia Generale, ASUGI - Ospedale San Giovanni di Dio, Gorizia, Italy. ⁸⁰Clinica Chirurgica, Cattinara University Hospital, ASUGI Trieste, Trieste, Italy. ⁸¹SS Antonio e Biagio e Cesare Arrigo Hospital, Alessandria, Italy. ⁸²University Hospital of Ferrara, Ferrara, Italy. ⁸³Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma - Università Cattolica del Sacro Cuore, Rome, Italy. ⁸⁴Department of Surgery, San Carlo Borromeo Hospital, ASST Santi Paolo e Carlo, Milan, Italy. 85 Department of Surgery and Traumatology-General Surgery Unit, "Lorenzo Bonomo Hospital"-ASL BAT, Andria, Italy. ⁸⁶Chirurgia Generale PO Santissima Trinità - ASL Cagliari, Cagliari, Italy. 87 Chirurgia GeneraleOspedale Sant'Anna di AUSL di Reggio Emilia, Reggio Emilia, Italy. ⁸⁸Division of General Surgery, ASST Valle Olona, Busto Arsizio, Italy. 89S.C. Chirurgia Generale, S. Andrea Hospital - ASL 5, La Spezia, Italy. ⁹⁰ Acute Care Surgery Unit, Ospedale G. Da Saliceto, Piacenza, Italy. ⁹¹ Chirurgia Generale dell'Ospedale Sant'Anna di San Fermo della Battaglia, San Fermo Della Battaglia, Italy. 92 U.O. Chirurgia Generale PO Trapani, Bergamo, Italy. ⁹³Uoc Chirurgia Ospedale Santa Maria degli Angeli Adria, Adria, Italy. ⁹⁴U.O.C. Chirurgia Generale 1 IRCCS Policlinico San Matteo Pavia, University of Pavia, Pavia, Italy. 95 Department of General and Emergency Surgery – "Vito Fazzi" Hospital, Lecce, Italy. 96General and Emergency Surgery Unit, Emergency Dept, Ospedale Santo Spirito in Sassia, 00193 Rome, Italy. ⁹⁷G.Fornaroli" Hospital, Magenta ASST Ovest Milanese, Milan, Italy. 98 Istituto Clinico San Gaudenzio – Novara, Novara, Italy. 99 San Marco Hospital GSD, Zingonia, BG, Italy. 100 Unità di Chirurgia GeneraleOspedale Pederzoli, Peschiera del Garda, VR, Italy. 101 Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy. 102 S.C. Chirurgia Generale ed Epatobiliopancreatica, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa, Italy. 103 ASST Cremona, Cremona, Italy. 104 Colorectal Surgery Unit, Fondazione Policlinico Campus Bio-Medico, Università Campus Bio-Medico di Roma, Rome, Italy. 105 S.C. Chirurgia Generale Ospedale Di Gardone Val Trompia - ASST Spedali Civili, Brescia, Italy. 106 Unit of Critical Care Surgery and Trauma-Trauma Team University Hospital Careggi, Florence, Italy. ¹⁰⁷ ASST Monza, Chirurgia 1, Monza, Italy. ¹⁰⁸ Ospedale Santa Maria delle Croci Ravenna Reparto di Chirurgia d'Urgenza, Ravenna, Italy. 109 UOC Chirurgia GeneraleOspedale Fatebenefratelli e Oftalmico, ASST Fatebenefratelli Sacco, Milan, Italy. ¹¹⁰General Surgery Unit, San Paolo Hospital, Civitavecchia, Italy. 111 Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy. 112 General Surgery Unit, Infermi Hospital, Rimini, Italy. 113 IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy. ¹¹⁴Alma Mater Studiorum University of Bologna, Bologna, Italy. 115 University of Naples "Federico II", Naples, Italy. 116 General Surgery, Emergencies and New Technologies, Baggiovara Civil Hospital Modena, Baggiovara, Italy. 117 General Surgery, Ospedale Papa Giovanni XXIII, ASST Papa Giovanni XXIII, Bergamo, Italy. ¹¹⁸Chirurgia Generale e OncologicaOsp. Mauriziano – Torino, Turin, Italy. ¹¹⁹General Surgery Unit - ASST Valtellina e Alto Lario, Sondrio Hospital – Sondrio, Sondrio, Italy. 120 Chiba Emergency Medical Center, Chiba, Japan. ¹²¹Tenwek Hospital, Bomet, Kenya. ¹²²Department of Surgery Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania. 123 Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical

Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania. 124 Department of Surgery, School of Medical Sciences and Hospital, Universiti Sains Malaysia, Gelugor, Malaysia. 125 Department of General Surgery, Hospital Sultan Ismail Petra, Kuala Krai, Kelantan, Malaysia. 126 Departamento de Cirugía Gastrointestinal y Enfermedades Digestivas "DR DANIEL RIOS CRUZ". Hospital Center Vista Hermosa, Cuernavaca Morelos, México. 127 Hospital Regional de Alta Especialidad del Bajio, León, Mexico. 128 Hospital Santo Tomás, Panamá City, Panamá. ¹²⁹ Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland. ¹³⁰ Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine, Warsaw, Poland. 131 Centro Hospitalar de Vila Nova de Gaia e Espinho, EPE, Vila Nova de Gaia, Portugal. 132 Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal. ¹³³Unidade Local de Saúde do Nordeste, EPE; Serviço de Cirurgia Geral, Bragança, Portugal. ¹³⁴CHTMAD – Portugal, Vila Real, Portugal. ¹³⁵General Surgery Grupo Trofa Saúde, Porto, Portugal. ¹³⁶General Surgery Department, Centro Hospitalar Barreiro Montijo, E.P.E., Barreiro, Portugal. ¹³⁷Centro Hospitalar Universitário do Algarve - Unidade de Faro, Faro, Portugal. 138 Carol Davila University of Medicine and Pharmacy Bucharest and Elias University Emergency Hospital Bucharest, Bucharest, Romania. 139 Department of Abdominal Surgery, Vladimir City Emergency Hospital, Vladimir, Russia. ¹⁴⁰Department of Surgical Diseases No. 3, Gomel State Medical University, University Clinic, Gomel, Belarus. 141 Pirogov Medical University Research Institute of Clinical Surgery, Moscow, Russia. 142 Forth Valley Royal Hospital, Larbert, Scotland, UK. 1434t, Department of Surgery, University Hospital Bratislava, Bratislava, Slovakia. 1441s, Department of Surgery, UPJS and UNLP Kosice, Kosice, Slovak Republic. 145 Gastrointestinal Surgery Department, Hospital Clinic de Barcelona, C/Villarroel 170, 08036 Barcelona, Spain. ¹⁴⁶Policlinico Umberto I University Hospital - Sapienza University of Rome, Rome, Italy. 147 Division of Surgical Oncology and Digestive Surgery, Department of Oncology, San Luigi University Hospital, University of Turin, 10043 Orbassano (Turin), Italy. 148 Ospedale Civile Spirito Santo, Pescara, Italy. ¹⁴⁹Emergency Surgery Unit, Hospital Virgen del Rocío, Seville, Spain. ¹⁵⁰General and Colorectal Surgeon, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain. 151 General and Digestive Surgery. Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain. 152 Emergency Surgery Unit, University Hospital of Gran Canaria Dr Negrin, Las Palmas de Gran Canaria, Spain. 153 Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain. ¹⁵⁴Colorectal Surgery, Badajoz University Hospital, Badajoz, Spain. ¹⁵⁵Donostia University Hospital, San Sebastián, Spain. 156 Emergency Surgery Unit, Department of General Surgery, Hospital del Mar, Barcelona, Spain. ¹⁵⁷Department of Surgery, Miguel Servet University Hospital, Saragossa, Spain. ¹⁵⁸Hospital Clínico San Carlos in Madrid, Madrid, Spain. ¹⁵⁹Hospital Universitari Son Llàtzer, Palma, Spain. 160 Hospital General Universitario Gregorio Marañón, Madrid, Spain. ¹⁶¹Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain. ¹⁶²Hospital Arnau de Vilanova, Lleida, Cataluña, Spain. ¹⁶³Trauma and Emergency Surgery Unit General, Digestive and Transplantation Department, University Regional Hospital Málaga, Málaga, Spain. 164 Colorectal and Gastrointestinal Department Hospital General Universitario de Elche Universidad Miguel Hernández, Elche, Alicante, Spain. 165 Department of General and Digestive Surgery. Hospital, Universitario Doctor Peset, Valencia, Spain. ¹⁶⁶Hepatobiliar and Pancreatic Surgery Unit General and Digestive Surgery University Hospital Virgen de Valme, Seville, Spain. ¹⁶⁷Emergency Surgery Unit at Hospital Universitari Parc Tauli, Sabadell, Spain. ¹⁶⁸General and Colorectal Surgeon, Hospital Universitario Infanta Sofia Madrid, Madrid, Spain. 169 General Surgery Service of the University Hospital of Salamanca, Salamanca, Spain. ¹⁷⁰Hospital Universitario Torrecardenas Almeria, Almeria, Spain. ¹⁷¹Hospital Universtario Puerta de Hierro, Madrid, Spain. 172 Hospital Universitario de Cabueñes Gijón, Asturias, Spain. 173 HPB and Transplantation Unit, Head of Emergency Surgery Unit, Seville, Spain. 174General and Digestive Surgery Department, Reina Sofía University Hospital, Cordoba, Spain. 175 Hospital Central de la Defensa Gómez Ulla, Madrid, Spain. 176Colorectal Surgery, Vall d'Hebron University Hospital, Barcelona, Spain. 177 Department of Sugery, Almoalem Medical City, Khartoum, Sudan. ¹⁷⁸Colorectal Surgery Unit, Department of Surgery and Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand. ¹⁷⁹Department of General Surgery Bizerte Hospital, Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia. ¹⁸⁰Department of Gastrointestinal Surgery, Sahloul Hospital, Sousse, Tunis, Tunisia. 181 Sfax Medical School, Tunis, Tunisia. 182 Samsun Training and Research Hospital Colak, Samsun, Turkey. 183 Department of General Surgery, Division of Upper GI Surgery and Institute of Medical Science, Department

of Biostatistics and Medical Informatics, Trabzon, Turkey. 184 Department of General Surgery, Sakarya University Training and Research Hospital, Sakarya, Turkey. 185 Department of General Surgery, Sakarya University Faculty of Medicine, Sakarya, Turkey. ¹⁸⁶General Surgery Clinic, School of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey. ¹⁸⁷Private Ortadogu Hospital Adana, Adana, Turkey. ¹⁸⁸General Surgery Clinic, Health Sciences University, Kanuni Sultan Süleyman Training and Research Hospital, Istanbul, Turkey. 189 University of Health Sciences, Adana City Training and Research Hospital, Adana, Turkey. 190 Department of General Surgery, University of Health Sciences Tepecik Training and Research Hospital, İzmir, Turkey. ¹⁹¹Department of General Surgery Elazig, Elazig Health Practice and Research Center, Elazig, Turkey. 192 Department of General Surgery, Bursa Kestel State Hospital, Kestel, Turkey. ¹⁹³Department of General Surgery, Bagcilar Training and Research Hospital University of Health Science, Istanbul, Turkey. ¹⁹⁴Department of General Surgery, Koç University Hospital, Istanbul, Turkey. ¹⁹⁵ John Radcliffe Hospital Oxford University Hospitals NHS Foundation Trust, Oxford, UK. 196 Brighton and Sussex University Hospitals, Brighton, UK. ¹⁹⁷Northwick Park and St Mark's Hospital – London North West NHS Trust, Harrow, UK. 198 Hospital de Clínicas Clínica Quirúrgica "F", Montevideo, Uruquay. 199 Department of Surgery, School of Medicine, Westchester Medical Center, New York Medical College, Valhalla, USA. 200 Comparative Effectiveness and Clinical Outcomes Research Center, Riverside University Health System Medical Center, Moreno Valley, CA, USA. ²⁰¹Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. 202 Division of Trauma, Acute Care Surgery and Surgical Critical Care, Department of Surgery, West Virginia University, Morgantown, USA. 203 Crozer-Chester Medical Center, Upland, PA, USA. ²⁰⁴Cooper University Hospital, Camden, NJ, USA. ²⁰⁵University of Michigan, Ann Arbor, USA. 206 Department of Surgery, University of Missouri, Columbia, USA. 207. Joseph Mercy, Ann Arbor, MI, USA. 208 Scripps Memorial Hospital La Jolla, San Diego, USA. ²⁰⁹General, Emergency and Trauma Surgery Department, Pisa University Hospital, Pisa, Italy. ²¹⁰Department of Surgery, Macerata Hospital, Macerata, Italy. 211 Healthcare Administration, Santa Maria Delle Croci Hospital, AUSL Romagna, Ravenna, Italy. ²¹²General Surgery, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.

Received: 1 November 2023 Accepted: 28 March 2024 Published online: 16 April 2024

References

- Hartmann H. 30th congress Francais de Chirurgie-Process, Verheaux, Memoires, et Discussions, 1921;30:411.
- Lockhart-Mummery P. Disease of the colon and their surgical treatment. Bristol: John Wright and Sons LTD; 1910. p. 181–2.
- Smithwick RH. Experiences with the surgical management of diverticulitis of the sigmoid. Ann Surg. 1942;115:969–83. https://doi.org/10.1097/ 00000658-194206000-00010.
- Jacobson MA, Young LS. New developments in the treatment of gramnegative bacteremia. West J Med. 1986;144(2):185–94.
- Krukowski ZH, Matheson NA. Emergency surgery for diverticular disease complicated by generalized and faecal peritonitis: a review. Br J Surg. 1984;71(12):921–7. https://doi.org/10.1002/bjs.1800711202.
- Zeitoun G, Laurent A, Rouffet F, Hay J, Fingerhut A, Paquet J, Peillon C, Research TF. Multicentre, randomized clinical trial of primary versus secondary sigmoid resection in generalized peritonitis complicating sigmoid diverticulitis. Br J Surg. 2008;87(10):1366–74. https://doi.org/10.1046/j. 1365-2168.2000.01552.x.
- Pisano M, Zorcolo L, Merli C, et al. 2017 WSES guidelines on colon and rectal cancer emergencies: obstruction and perforation. World J Emerg Surg. 2018;13:36. https://doi.org/10.1186/s13017-018-0192-3.
- Sartelli M, Catena F, Ansaloni L, Coccolini F, Griffiths EA, Abu-Zidan FM, et al. WSES guidelines for the management of acute left sided colonic diverticulitis in the emergency setting. World J Emerg Surg. 2016;11:37.
- 9. Lambrichts D, Vennix S, Musters GD, Mulder IM, Swank HA, Hoofwijk A, Belgers E, Stockmann H, Eijsbouts Q, Gerhards MF, van Wagensveld BA, van Geloven A, Crolla R, Nienhuijs SW, Govaert M, di Saverio S, D'Hoore A, Consten E, van Grevenstein W, Pierik R, Kruyt PM, van der Hoeven JAB, Steup WH, Catena F, Konsten JLM, Vermeulen J, van Dieren S, Bemelman WA, Lange JF, LADIES trial collaborators. Hartmann's procedure versus

- sigmoidectomy with primary anastomosis for perforated diverticulitis with purulent or faecal peritonitis (LADIES): a multicentre, parallel-group, randomised, open-label, superiority trial. Lancet Gastroenterol Hepatol. 2019;4(8):599–610. https://doi.org/10.1016/S2468-1253(19)30174-8.
- Bridoux V, Regimbeau JM, Ouaissi M, Mathonnet M, Mauvais F, Houivet E, Schwarz L, Mege D, Sielezneff I, Sabbagh C, Tuech JJ. Hartmann's procedure or primary anastomosis for generalized peritonitis due to perforated diverticulitis: a prospective multicenter randomized trial (DIVERTI). J Am Coll Surg. 2017;225(6):798–805. https://doi.org/10.1016/j.jamcollsurg. 2017.09.004.
- Banerjee S, Leather AJ, Rennie JA, Samano N, Gonzalez JG, Papagrigoriadis S. Feasibility and morbidity of reversal of Hartmann's. Colorectal Dis. 2005;7(5):454–9. https://doi.org/10.1111/j.1463-1318.2005.00862.x.
- Acuna SA, Dossa F, Baxter NN. The end of the Hartmann's era for perforated diverticulitis. Lancet Gastroenterol Hepatol. 2019;4(8):573–5. https://doi.org/10.1016/S2468-1253(19)30182-7.
- Perrone G, Giuffrida M, Tarasconi A, Petracca GL, Annicchiarico A, Bonati E, Rossi G, Catena F. Conservative management of complicated colonic diverticulitis: long-term results. Eur J Trauma Emerg Surg. 2022. https:// doi.org/10.1007/s00068-022-01922-1.
- 14. Perrone G, Sartelli M, Mario G, Chichom-Mefire A, Labricciosa FM, Abu-Zidan FM, Ansaloni L, Biffl WL, Ceresoli M, Coccolini F, Coimbra R, Demetrashvili Z, Di Saverio S, Fraga GP, Khokha V, Kirkpatrick AW, Kluger Y, Leppaniemi A, Maier RV, Moore EE, Negoi I, Ordonez CA, Sakakushev B, Lohse HAS, Velmahos GC, Wani I, Weber DG, Bonati E, Catena F. Management of intra-abdominal-infections: 2017 World Society of Emergency Surgery guidelines summary focused on remote areas and low-income nations. Int J Infect Dis. 2020;99:140–8. https://doi.org/10.1016/j.ijid.2020.07.046.
- World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4. https://doi.org/10.1001/jama.2013. 281053
- Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.
- Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, McLeod L, Delacqua G, Delacqua F, Kirby J, Duda SN. REDCap consortium, the REDCap consortium: building an international community of software partners. J Biomed Inform. 2019. https://doi.org/10.1016/j.jbi.2019. 103208.
- Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.
- Sartelli M, Moore FA, Ansaloni L, Di Saverio S, Coccolini F, Griffiths EA, et al. A proposal for a CT driven classification of left colon acute diverticulitis. World J Emerg Surg. 2015;10:3.
- Binda GA, Serventi A, Puntoni M, Amato A. Primary anastomosis versus Hartmann's procedure for perforated diverticulitis with peritonitis: an impracticable trial. Ann Surg. 2015;261(4):e116–7. https://doi.org/10. 1097/SLA.0000000000000536.
- Bezerra RP, Costa ACD, Santa-Cruz F, Ferraz ÁAB. Hartmann procedure or resection with primary anastomosis for treatment of perforated diverticulitis? Systematic review and meta-analysis. Braz Arch Digest Surg. 2021;33(3):e1546. https://doi.org/10.1590/0102-672020200003e1546.
- Lin FL, Boutros M, Da Silva GM, Weiss EG, Lu XR, Wexner SD. Hartmann reversal: obesity adversely impacts outcome. Dis Colon Rectum. 2013;56(1):83–90.
- 23. Oberkofler CE, Rickenbacher A, Raptis DA, Lehmann K, Villiger P, Buchli C, et al. A multicenter randomized clinical trial of primary anastomosis or Hartmann's procedure for perforated left colonic diverticulitis with purulent or fecal peritonitis. Ann Surg. 2012;256:819–26.
- Biondo S, Pares D, Frago R, Marti-Rague J, Kreisler E, De Oca J, Jaurrieta E. Large bowel obstruction: predictive factors for postoperative mortality. Dis Colon Rectum. 2004;47(11):1889–97.
- Breitenstein S, Rickenbacher A, Berdajs D, Puhan M, Clavien PA, Demartines N. Systematic evaluation of surgical strategies for acute malignant left-sided colonic obstruction. Br J Surg. 2007;94:1451–60.
- Hallam S, Mothe BS, Tirumulaju R. Hartmann's procedure, reversal and rate of stoma-free survival. Ann R Coll Surg Engl. 2018;100(4):301–7. https://doi.org/10.1308/rcsann.2018.0006.

- Salusjärvi JM, Koskenvuo LE, Mali JP, Mentula PJ, Leppäniemi AK, Sallinen VJ. Stoma reversal after Hartmann's procedure for acute diverticulitis. Surgery. 2023;173(4):920–6. https://doi.org/10.1016/j.surg.2022.10.028.
- 28. Lee JM, Bai P, Chang J, El Hechi M, Kongkaewpaisan N, Bonde A, et al. Hartmann's procedure vs primary anastomosis with diverting loop ileostomy for acute diverticulitis: nationwide analysis of 2,729 emergency surgery patients. J Am Coll Surg. 2019;229:48–55.
- Cirocchi R, Trastulli S, Desiderio J, Listorti C, Boselli C, Parisi A, et al. Treatment of Hinchey stage III-IV diverticulitis: a systematic review and metaanalysis. Int J Color Dis. 2013;28:447–57.
- Edomskis PP, Hoek VT, Stark PW, et al. Hartmann's procedure versus sigmoidectomy with primary anastomosis for perforated diverticulitis with purulent or fecal peritonitis: three-year follow-up of a randomised controlled trial. Int J Surg. 2022;98:106221. https://doi.org/10.1016/j.ijsu. 2021.106221
- 31. Lambrichts DP, Edomskis PP, van der Bogt RD, Kleinrensink GJ, Bemelman WA, Lange JF. Sigmoid resection with primary anastomosis versus the Hartmann's procedure for perforated diverticulitis with purulent or fecal peritonitis: a systematic review and meta-analysis. Int J Colorectal Dis. 2020;35(8):1371–86. https://doi.org/10.1007/s00384-020-03617-8.
- 32. Udyavar NR, Salim A, Havens JM, et al. The impact of individual physicians on outcomes after trauma: is it the system or the surgeon? J Surg Res. 2018;229:51–7. https://doi.org/10.1016/j.jss.2018.02.051.
- Becher RD, Sukumar N, DeWane MP, et al. Hospital variation in geriatric surgical safety for emergency operation. J Am Coll Surg. 2020;230(6):966-973.e10. https://doi.org/10.1016/j.jamcollsurg.2019.10.018.
- Ibrahim I, Chua MT, Tan DW, Yap SH, Shen L, Ooi SBS. Impact of 24-hour specialist coverage and an on-site CT scanner on the timely diagnosis of acute aortic dissection. Singap Med J. 2020;61(2):86–91. https://doi.org/ 10.11622/smedj.2019039.
- Georgiou A, Lockey DJ. The performance and assessment of hospital trauma teams. Scand J Trauma Resusc Emerg Med. 2010;18:66. https://doi.org/10.1186/1757-7241-18-66.
- 36. Hendra L, Hendra T, Parker SJ. Decision-making in the emergency laparotomy: a mixed methodology study. World J Surg. 2019;43(3):798–805. https://doi.org/10.1007/s00268-018-4849-6.
- Rogers SO Jr, Gawande AA, Kwaan M, et al. Analysis of surgical errors in closed malpractice claims at 4 liability insurers. Surgery. 2006;140(1):25– 33. https://doi.org/10.1016/j.surg.2006.01.008.
- Yalkın Ö, Altıntoprak F, Uzunoğlu MY, et al. Factors predicting the reversal of Hartmann's procedure. Biomed Res Int. 2022;2022:7831498. https://doi. org/10.1155/2022/7831498.
- 39. Ince M, Stocchi L, Khomvilai S, Kwon DS, Hammel JP, Kiran RP. Morbidity and mortality of the Hartmann procedure for diverticular disease over 18 years in a single institution. Colorectal Dis. 2012;14(8):e492–8. https://doi.org/10.1111/j.1463-1318.2012.03004x.
- 40. Reali C, Landerholm K, George B, Jones O. Hartmann's reversal: controversies of a challenging operation. Minim Invasive Surg. 2022;2022:7578923. https://doi.org/10.1155/2022/7578923.
- Pavlidis ET, Pavlidis TE. Current aspects on the management of perforated acute diverticulitis: a narrative review. Cureus. 2022;14(8):e28446. https://doi.org/10.7759/cureus.28446.
- Nascimbeni R, Amato A, Cirocchi R, et al. Management of perforated diverticulitis with generalized peritonitis. A multidisciplinary review and position paper. Tech Coloproctol. 2021;25(2):153–65. https://doi.org/10. 1007/s10151-020-02346-y.
- Wilson I, Rahman S, Pucher P, Mercer S. Laparoscopy in high-risk emergency general surgery reduces intensive care stay, length of stay and mortality. Langenbecks Arch Surg. 2023;408(1):62. https://doi.org/10.1007/s00423-022-02744-w.
- Donohue SJ, Reinke CE, Evans SL, et al. Laparoscopy is associated with decreased all-cause mortality in patients undergoing emergency general surgery procedures in a regional health system. Surg Endosc. 2022;36(6):3822–32. https://doi.org/10.1007/s00464-021-08699-1.
- de'Angelis N, Khan J, Marchegiani F, et al. Robotic surgery in emergency setting: 2021 WSES position paper. World J Emerg Surg. 2022;17(1):4. https://doi.org/10.1186/s13017-022-00410-6.
- Felli E, Brunetti F, Disabato M, Salloum C, Azoulay D, de'Angelis N. Robotic right colectomy for hemorrhagic right colon cancer: a case report and review of the literature of minimally invasive urgent colectomy. World J Emerg Surg. 2014;9:32. https://doi.org/10.1186/1749-7922-9-32.

47. Veld JV, Amelung FJ, Borstlap WAA, van Halsema EE, Consten ECJ, Siersema PD, Ter Borg F, van der Zaag ES, de Wilt JHW, Fockens P, Bemelman WA, van Hooft JE, Tanis PJ. Comparison of decompressing stoma vs stent as a bridge to surgery for left-sided obstructive colon cancer. JAMA Surg. 2020;155(3):206–15. https://doi.org/10.1001/jamasurg.2019.5466. (Erratum in: JAMA Surg. 2020 Mar 1;155(3):269).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.