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Abstract: While there is growing recognition of the positive role played by organic farming in the
reduction of the negative externalities due to conventional agriculture, there is uncertainty about the
effect of the latter on the economic performance of the farms. In this scenario, the present paper aims
at investigating the effect of organic farming on technical efficiency in Italian olive farms. A cross-
section dataset was analyzed through the stochastic frontier function, where the adoption of organic
farming was explicitly modeled. Then, to obtain an unbiased estimate of the impact of organic
farming on technical efficiency, a propensity score matching method was implemented. The findings
reveal that organic farming increases technical efficiency in Italian olive farms by approximately
10%. The highest impact of organic farming is observed in small farms. As for the propensity
to become organic, we found that the production and the direct sales of a higher quality of gross
marketable output, as well as the intensity of labor and machines, increase the probability to adopt
organic farming. Conversely, farm localization, the availability of family labor, and financial capital
discourage conversion to the organic farming system.

Keywords: organic agriculture; stochastic frontier function; propensity score matching; FADN;
olive farms

1. Introduction

For decades to come, agriculture has imposed many negative externalities upon
society, through the overuse of land and water resources, biodiversity loss, soil erosion,
and the unsustainable use of pesticides [1,2]. The external costs of conventional agriculture
raise important challenges to both the scientific community and policymakers, especially
with regards to identifying more effective management practices for reducing negative
externalities [3] while increasing the supply of public goods [4–6]. Accordingly, the general
interest in alternative farming systems (AFSs) is increasing [7–9] because AFSs improve the
ecological, social, and economic dimensions of sustainability [8,10]. Organic agriculture
represents an effective practice to use natural resources in a more environmental-friendly
way as it involves dependence on self-regulating ecological or biological processes and
renewable resources [11]. Organic agriculture is the main AFS adopted in the world [12].
Notwithstanding, while there is growing social recognition of the positive role played
by this type of farming in the conservation of natural resources and the reduction or
elimination of the negative externalities of conventional agriculture, the conversion to
organic farming is still scarce [7]. Accordingly, despite that organic food consumption
has risen in many countries during the past decades [13], the organic production comes
from only 1% of the global agricultural land [12], motivating the European Commission
to increase organic farming through the Farm to Fork Strategy [14]. A recent study from
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Home and co-authors [7] highlighted some of the main barriers to farmers’ conversion.
The study found that external, technical production, social, and personal factors influence
the decision of whether to convert to organic production [7]. Certification (e.g., organic) is
also considered a high-entry barrier for many small-scale farmers [15–17]. Several studies
examined the impact of certification on the return on investment, yields, selling prices,
farming practices, or welfare measures such as farm income [18–21]. Most researchers
found modest positive impacts of different certifications on economic welfare [19,21–24].
Other researchers have been rather skeptical about the ability of certification to increase
farmers’ wellbeing, as it affects revenue only marginally while involving high restrictions
and high costs [24–26]. Moreover, several scientists found that protectionism through
the certification system tends to generate technical inefficiencies, and thus productivity
losses [27,28], as it reduces technical choices for organic farming. However, according to
other researchers, restrictions on production inputs forcing organic farmers to be more
cautious with input use thus reduce production costs [29,30].

Based on what has been said so far, the present study analyses cross-section Italian
Farm Accountancy Data Network (FADN) to investigate the effect of certified organic
agriculture on technical efficiency (TE) in Italian olive farms. The Mediterranean basin is
the largest world area having specific climatic conditions suitable for olive cultivation [31].
The Mediterranean area is the geographic location in which, more than in others, olive
growing is a significant source of income and employment for rural populations both
in European countries (such as Spain, Italy, Greece, and Portugal) and in non-European
ones (Tunisia, Turkey, and Syria) [31]. Italy represents the second-largest producer of
olive oil, with 570,000 tons (about 20% of world production), and the first consumer, with
610,000 tons (19.8% of consumption worldwide) [32,33]. According to the Italian Institute
of Statistics (ISTAT) [34], the Italian olive area amounts to 1.17 million hectares and involves
902,075 farms (56% of total Italian farms). Olive farming is mainly concentrated in the
Southern regions, Apulia, Calabria, and Sicily. Despite that, in Italy, organic olive growing
is the most widespread organic tree cultivation [35], only 20% of the national olive area is
devoted to organic production in 2018 [36]. To the best of our knowledge, this is the first
research that investigates the organic certification effect on the technical efficiency of olive
farms. The remainder of the paper is organized as follows. The research question of the
study is pointed out in Section 2. In Section 3, the methodology is explained followed by
data description. Section 4 presents the results, while the last section (Section 5) concludes.

2. Theoretical Background

Over the last decades, policymakers have been increasing their interest in the eco-
nomic and environmental performances of production systems to design effective policies.
Accordingly, several studies have compared technical efficiency between conventional
and organic farming systems [37–39]. Technical efficiency (TE) assesses the ability of a
farm to obtain maximum outputs given a limited set of inputs (called output-oriented)
or the ability to use the minimum amount of inputs given a finite level of outputs (called
input-oriented) [40–42]. The literature is not unanimous about the technical efficiency
differences among organic and conventional farms. In a recent review, Lakner and Breust-
edt [43] pointed out that organic farms mainly achieve lower technical efficiency—roughly
4 percent—than conventional farms [29,40,44]. Besides, Flubacher [36], who compared
the technical efficiency of organic and conventional dairy farms in the Swiss mountain
region, highlights similar results. Conversely, some researchers revealed that the technical
efficiency attained by organic farms is higher than that of conventional ones [45,46].

Researchers also disagree about the effects caused by converting conventional farms
to organic farms [47]. According to some of them, organic certification has a positive effect
on farmers’ income [48–50]. The organic farming system leads to specific consequences,
such as (i) the reduction of production costs owing to lower use of pesticides and fertilizers,
(ii) the increase of income through the price premium given by consumers [51–53], and
(iii) the economic payment and the offset of crop yields [54]. For instance, Mansoori and
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colleagues [55] found that, in rice production, organic practices achieve lower costs of
production than conventional farms. Unlike previous authors, some others revealed that
organic farming certification negatively affects farm profitability [56,57] owing to specific
aspects: (i) the prohibition of using chemicals increases the potential production risk;
(ii) a higher price risk is also highlighted as the demand for organic products is poor or
sometimes unvoiced [57]; (iii) a higher labor demand, especially for organic orchards [11];
and (iv) a higher machinery use and changes in production practices [58]. Moreover, the
increase in producer price and the economic subsidies might be not sufficient to compensate
for the certification costs [59]. According to Zhang and colleagues [57], the net income per
hectare was 25% lower in organic soybean farms than in the conventional system, while
Froehlich and colleagues [60] assessed the Brazilian organic producers’ profits to be around
7–10% lower than those of the conventional farms.

The occurred dichotomy is the main driver of the current study, which aims to assess
the effect of organic certification on farm technical efficiency in Italian olive farms. In par-
ticular, this research aims to identify to what extent organic certification may influence
the technical efficiency of Italian olive farms. To reach this purpose, we firstly estimate
technical efficiency through the parametric approach, where external factors (e.g., organic
certification) have been explicitly modeled. Then, once scores are obtained, the impact
of the organic certification on technical efficiency is identified in a quasi-experimental
approach by employing the propensity score matching (PSM) method.

3. Methods
3.1. Stochastic Frontier Analysis

Technical efficiency (TE) is widely investigated for olive farms [27,61–63]. The measure
of TE was proposed for the first time by Farrell [64], who compared the observed output
to the best production output, given a specific quantity of input. Based on this concept,
several approaches were developed to estimate TE, which can be grouped into two main
categories: the parametric and the non-parametric methods [40,65]. The former assume a
defined functional form of the production function and frequently include the stochastic
frontier production (SFP) approach [66,67]. Conversely, the non-parametric methods do
not assume a specific functional form, as in the data envelopment analysis (DEA) approach.
Notwithstanding the last one seems a more flexible and generalizable method, as it does
not define a priori a specific function of production, the main deficiency is its deterministic
nature. Specifically, the DEA approach does not allow distinguishing between inefficiency
due to technical inefficiency and accidental disturbance [65,68], but all deviations from the
production frontier are related to technical inefficiency. Thus, according to Battese and
Coelli [69], a non-parametric model is inappropriate for several agro-economic studies
because DEA does not indicate if inefficiency is due to entrepreneur’s management or if it
depends on contextual variables, such as environmental characteristics. Unlike the DEA
model, the SFP model—adopted in the current study—includes two error components:
one representing the stochastic effect related to statistical noise (v) and the other related to
technical inefficiency of the farms (u). In particular, by following Battese and Coelli [69],
we have tested several specifications that differ for the functional form (Cobb–Douglas or
Translog) and for including (or not) the environmental factors in the inefficiency term(u) or
directly in the production function (Table 1).
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Table 1. Model selection.

Model Functional
Forms

Inclusion of Env. Factors in
the Production Function

Inclusion of Env. Factors in
the Inefficiency Term

Log-
Likelihood

Number of
Parameters AIC BIC

1 Cobb–Douglas NO NO −306.2 7 626.3 653.5
2 Translog NO NO −299.6 11 621.2 663.8
3 Cobb–Douglas NO YES −281.9 12 587.7 634.2
4 Translog NO YES −270.7 16 573.4 635.3
5 Translog YES NO −275.0 17 584.0 649.8
6 Cobb–Douglas YES NO −285.3 13 596.7 647.0
7 Cobb–Douglas YES YES −278.2 18 592.5 662.2
8 Translog YES YES −266.4 22 576.7 661.9

The Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion
(BIC) suggest including the environmental factors only in the inefficiency term (model 3 and
4), while they do not provide a clear indication on the functional form. Thus, the following
Cobb–Douglas production function was selected for the parsimony of parameters, with the
assumption of constant returns to scale (Equation (1)):

lnyi = β0 +
3

∑
k=1

βk ln xk,i + vi − ui

i = 1, . . . , 355

(1)

where yi is the observed output of the i-th firm, xk,i represents the value of k-th input used
by the firm (working capital, land capital, and labor), and β0 and the βk are parameters
to be estimated. The vi is an error term with zero mean and variance σv

2, and ui is an
independent random term accounting for technical inefficiency in production.

Following Battese and Coelli [69] and Coelli and colleagues [70], the predictor of TE
involves the conditional expectation of exp (–ui), given the random variable εi. Accordingly,
TE is defined as follow (Equation (2)):

TEi = E [exp (ui)|εi] (2)

The defined frontier model does not account for the possibility that different environ-
mental conditions may influence the different levels of farms’ technical efficiency. However,
it has been shown that environmental conditions may affect (i) the shape of production
technology as well as (ii) the TE of the firm [70]. According to Battese and Coelli [69],
environmental factors directly affect the degree of technical inefficiency, thus the environ-
mental factors would be modeled to assess the inefficiency term (ui). In other words, the
environmental factors do not affect the technology endowment, but they may influence the
distance that separates each firm from the best practice function.

As a consequence, the inefficiency term (ui) obtained by the truncation of the normal
distribution with mean δmzm,i and variance σ2 can be expressed as a function of a vector
(zm,i) of M environmental and farm characteristics, while δm are the parameters to be
estimated (Equation (3)).

ui ~N+

(
M

∑
m=1

δmzm,i,σ2

)
i = 1, . . . , 355

(3)

This specification assumes that the z term may influence the inefficiency of the farm
without implying a real change in the technology.

Therefore, Equation (1) becomes the following:

lnyi = β0 +
3

∑
k=1

βk ln xk,i+vi −
(

M

∑
m=1

δmzm,i,σ2

)
i = 1, . . . , 355

(4)
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where ln yi is the logarithmic of the gross marketable production, the output of the stochas-
tic frontier function (Equation (4)). The term lnxk,i includes the standard inputs of produc-
tion, such as land capital, working capital, and labor, while zm,i refers to the environmental
and farm characteristics. Based on previous studies, this work includes in the zm term
the presence of organic certification [23–25], the altimetry [71], as well as the geographic
area [72] and the diversification of production [43].

3.2. Treatment Effect of Organic Certification

Equation (4) allows us to assess the TE of both organic and conventional farms. More
precisely, significant differences in TE between organic and conventional farms could be
associated with the certification. However, we are not able to properly identify the effect of
organic certification on TE because sample selection bias or endogeneity problems may
arise. The former occurs if conventional farms are systematically different from those
organic (for instance, being larger), thus, consequently, the comparison is biased by other
structural differences. The endogeneity occurs when there are specific motivations for
farmers to adopt organic certifications that might also be related to the outcome of interest,
basically, the technical efficiency. To overcome these problems, a quasi-experimental
approach should be followed. The key advantage of quasi-experimental studies (over
non-experimental methods) is the possibility to artificially adjust (i.e., basically through
statistical procedures) the non-randomness of both control and treatment groups to make
them comparable for the observing characteristics. Only after this adjustment, the treatment
effect can be measured as the difference of mean outcomes [73]. More in detail, to reduce the
estimation bias resulting from the comparison between two groups (control and treated), a
propensity score matching (PSM) was implemented. We keep the “treated” and “control”
terms of experimental studies and we intend, for “treated”, the organic farms, and for
the “control” group, or untreated, the conventional ones. If the status of being organic
(Oi = 1) stochastically depends on a set of observable characteristics, meaning that it is not
randomly assigned, the propensity score can be implemented as a measure of conditional
probability (Equation (5)) of being organic upon the observed variables, s, namely farm
and farmer characteristics (reported in Table 2):

p(si) = Pr[Oi = 1|si]
i = 1, . . . , 355

(5)

Then, to analyze factors that may affect the probability of observing farms being
organic, p(si), the following discrete choice model is implemented (Equation (6)):

Pr(Yi = 1) = Φ(α + βWi + γTi + ηi)
i = 1, . . . , 355

(6)

where Yi is the observable binary variable of farms, while Φ is the cumulative distribution
function of the standardised normal variable. Wi is a vector of structural characteristics of
the i-th farm and the Ti term is a vector of socio-demographics characteristics of the i-th
farmer. Finally, ηi is the error component.

Once a propensity score estimation is computed, the next step is to match the treated
(organic farms) to a control group (conventional farms) based on the estimated propensity
score [74,75]. Only those farms having a similar propensity of being organic were compared.
To do this, we estimated the average effect of treatment on the treated (ATT) by the
stratification matching and the nearest-neighbour matching methods (Equation (7)).

ATT = E[∆Yi|p(si),Oi = 1]
i = 1, . . . , 355

(7)

The stratification matching method consists of dividing the range of variation of the
propensity score in intervals such that, within each interval, treated and control units have
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on average the same propensity score. Then, within each interval in which both treated
and control farms are present, the difference between the average outcomes of the treated
and the control is computed. Finally, the ATT of interest is obtained as an average of the
ATT of each block with weights given by the distribution of treated units across blocks.
The main weakness of this method is that it discards observations in blocks wherein either
treated or control units are absent. An alternative way to match treated and control units,
which consists of taking each treated unit and searching for the control unit with the closest
propensity score, is the nearest neighbour matching method. In this case, a control unit can
be the best match for more than one treated unit. Once each treated unit is matched with a
control unit, the difference between the outcome of the treated units and the outcome of
the matched control units is computed. The ATT of interest is thus obtained by averaging
these differences.

Table 2. Descriptive statistics of variables for organic and conventional farms.

Variable
Variable Description

All Sample Organic Farms
(obs.103)

Conventional
Farms (obs.252)(obs.355)

Mean Std. Dev. Mean Mean

GMO Economic value of gross marketable output (GMO) 81,367.3 118,783.5 74,182.15 84,304.12
Added_value (€) Farm net value added 68,643.81 105,204.1 62,958 70,967.77

Working_Cap Economic value of circulating agricultural capital 615.782 912.397 521.47 654.33
Mec_value (€) Economic value of machines 19,450.48 30,483.94 14,702.25 21,391.22

Capes_UAA (€/ha) Ratio between the circulating agricultural capital
and UAA 1454.38 2685.18 1051.79 1618.93

Mecc_UAA (€/ha) Ratio between mechanic value and UAA 1433.75 2614.26 1047.54 1591.61
Labour Economic value of labour 40,687.1 45,902.38 37,742.26 41,890.78

Hours of labor Total hours of labour 4238.24 4781.5 3931.49 4363.62
Lab_prod (€/hour) Ratio between GMO and hours of labor 17.99 10.41 18.58 17.75
Activity (hours/ha) Ratio between hours of labor and UAA 324.54 346.77 267.99 347.66

Labf (hours_fam/ha) Ratio between hours of family labour and UAA 0.09 0.08 0.07 0.1
Land_Cap Economic value of land capital 7400.55 11,884.64 7227.24 7471.39

Land_prod (€/ha) Ratio between GMO and UAA 4748.63 3564.74 4174.31 4983.37
UAA (ha) Used agricultural area (UAA) 21.56 31.55 21.08 21.75

GMO_quality (1 = yes; 0 = no) Gross marketable output obtained from quality
products 0.05 N.A. 0.1 0.04

Short_sc (1 = yes; 0 = no) Short supply chain 0.1 N.A. 0.15 0.09
Diversified activities Presence of complementary activities (1 = yes; 0 = no) 0.1 N.A. 0.12 0.09

Gender (1 = female; 0 = male) 0.34 N.A. 0.32 0.34
Young (1 = yes; 0 = no) 0.17 N.A. 0.19 0.16

Altimetry classification (1 = mountain 2 = hill 3 = plain) 2.13 N.A. 2.1 2.14
Geographic area_1 (1 = south and island; 0 = otherwise) 0.8 N.A. 0.86 0.77
Geographic area_2 (1 = north; 0 = otherwise) 0.05 N.A. 0 0.07
Geographic area_3 (1 = center; 0 = otherwise) 0.15 N.A. 0.14 0.15

N.A. not applicable; in bold, variables included in the stochastic frontier model.

3.3. Data Description

The FADN database is used for conducting the investigation. FADN represents the
official EU source of micro-data for understanding the impact of agricultural policies.
It contains around 1000 variables for monitoring farms’ income and business activities,
covering approximately overall 10,000 Italian farms, and it is representative of the na-
tional population of farms [76]. Our analysis includes data on Italian olive farms from
2015. Regarding this production, the sample includes 355 olive farms, of which 29% are
organic (n = 103) and the remaining 71% are conventional (n = 252). Table 1 shows the
descriptive statistics of the main economic and structural characteristics of both organic
and conventional farms.

4. Results
4.1. Technical Efficiency Estimates

The estimated coefficients of the stochastic frontier model are presented in Table 3.
Coefficients have the expected signs as all inputs of production included in the model,
such as working capital, land capital, and labor, are positively associated with the gross
marketable output (GMO) of farms. The estimated coefficients of the Cobb–Douglas
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functional form represent input elasticities, showing the greatest elasticity (+0.98) for
labor. As for the inefficiency measure (the U term in Table 3), all environmental variables
are significant. In particular, organic certification is negatively associated (−1.01) with
the technical inefficiency error component. This provides some evidence that organic
certification may increase the technical efficiency (TE) of the farm. Furthermore, farms
located in hill or plain areas show a negative impact on the farm technical inefficiency
error component (−0.84 and −1.26, respectively), thus olive farms located in mountain
areas seem less efficient than those located in hill or plain areas. A negative association
with the technical inefficiency error component is also shown by farms located in Northern
Italy, but this is not significant. Conversely, a positive and significant impact (+1.082) on
inefficiency is revealed in the central regions, meaning that olive farms located in Central
Italy seem less efficient than those located in the southern regions. The increase of technical
inefficiency of the farm is also due to the presence of activities complementary to the
agricultural production. Indeed, our findings show that the diversified activities at the
farm level may increase technical inefficiency by 1.23.

Table 3. Coefficient estimates of the stochastic frontier analysis.

Dep.var: ln (GMO) Coef. Std. Err. p-Value

Frontier
ln (working_cap) 0.044 0.017 0.009 ***

ln (land_cap) 0.125 0.022 0.000 ***
ln (labour) 0.980 0.044 0.000 ***

Cons −0.109 0.411 0.790

U
Organic certification −1.011 0.391 0.010 **

Geographic area (north) −3.690 3.311 0.265
Geographic area (center) 1.082 0.299 0.000 ***

Diversified activities 1.234 0.327 0.000 ***
Altimetry classification (hill) −0.842 0.366 0.021 **

Altimetry classification (plain) −1.258 0.516 0.015 **

Usigma
Cons −0.299 0.214 0.163

Vsigma
Cons −1.948 0.168 0.000 ***

Obs. = 355; Wald chi2 = 930 (p-value < 0.001); frontier test (M3T): 30.39, (p-value < 0.001). ** p-value < 0.05;
*** p-value < 0.01.

The following figure (Figure 1) illustrates the distribution of TE (θ) of both organic
and conventional farms. The values of θ give information about the distance from the
data point to the production frontier assuming values from“0” to“1”, where “0” means the
lowest value of farm TE, while “1” is the maximum value of TE. Even if the distribution
functions of TE for the two groups of farms are similar, the average value of θ for organic
farms is 0.716, while it is equal to 0.640 for conventional farms. Table 4 shows the average
percentage differences in TE between organic and conventional farms grouped by macro-
areas and by the size of the farms in terms of used agricultural area (UAA). The highest
average value of TE is achieved in conventional farms located in Northern Italy (0.863),
while the highest value of TE in organic farms is achieved in farms located in Southern Italy.
However, it should be highlighted that there are no organic olive farms in Northern Italy.



Agriculture 2021, 11, 209 8 of 15

Agriculture 2021, 11, 209 8 of 15 
 

 

areas and by the size of the farms in terms of used agricultural area (UAA). The highest 
average value of TE is achieved in conventional farms located in Northern Italy (0.863), 
while the highest value of TE in organic farms is achieved in farms located in Southern 
Italy. However, it should be highlighted that there are no organic olive farms in Northern 
Italy. 

  
Figure 1. Technical efficiency parameter (θ). 

Table 4. Descriptive statistics and average values of technical efficiency (TE) by macro areas. 

Description Area Average θ Obs 

Organic 
South and Islands 0.751 89 

Center 0.504 14 
North N.A. 0 

Conventional 
South and Islands 0.671 195 

Center 0.462 39 
North 0.863 18 

N.A., not applicable. 

Moreover, the findings emphasized that the greatest differences in TE values are 
mainly observed in small farms—those with less than five hectares—and especially in 
farms located in Central Italy. Indeed, the average percentage differences in TE for organic 
farms is more than 28% in small farms located in Central Italy, followed by farms located 
in the South and in North Italy, where the percentage differences in TE are 15.6% and 
14.9%, respectively (Table 5). 

Table 5. Average percentage differences in TE for organic olive farms by macro areas and by UAA. 

Area  Class UAA Δθ (%) Std. Dev. Frequency Distribution  

South and Islands 

<5 ha  15.6 5.39 31 11% 
5–15 ha 14.5 7.77 146 51% 

15–40 ha 9.9 6.82 71 25% 
>40 ha 9.9 7.22 36 13% 
Total   284 100% 

Center 

<5 ha 28.4 1.63 4 8% 
5–15 ha 23.7 8.32 24 45% 

15–40 ha 21.1 8.34 14 26% 
>40 ha 16.8 7.84 11 21% 
Total   53 100% 

North <5 ha 14.9 9.50 9 50% 

Figure 1. Technical efficiency parameter (θ).

Table 4. Descriptive statistics and average values of technical efficiency (TE) by macro areas.

Description Area Average θ Obs

Organic
South and Islands 0.751 89

Center 0.504 14
North N.A. 0

Conventional
South and Islands 0.671 195

Center 0.462 39
North 0.863 18

N.A., not applicable.

Moreover, the findings emphasized that the greatest differences in TE values are
mainly observed in small farms—those with less than five hectares—and especially in
farms located in Central Italy. Indeed, the average percentage differences in TE for organic
farms is more than 28% in small farms located in Central Italy, followed by farms located in
the South and in North Italy, where the percentage differences in TE are 15.6% and 14.9%,
respectively (Table 5).

Table 5. Average percentage differences in TE for organic olive farms by macro areas and by UAA.

Area Class UAA ∆θ (%) Std. Dev. Frequency Distribution

South and
Islands

<5 ha 15.6 5.39 31 11%
5–15 ha 14.5 7.77 146 51%
15–40 ha 9.9 6.82 71 25%
>40 ha 9.9 7.22 36 13%
Total 284 100%

Center

<5 ha 28.4 1.63 4 8%
5–15 ha 23.7 8.32 24 45%
15–40 ha 21.1 8.34 14 26%
>40 ha 16.8 7.84 11 21%
Total 53 100%

North
<5 ha 14.9 9.50 9 50%

5–15 ha 11.7 8.35 9 50%
Total 18 100%

4.2. Propensity Score and ATT Estimates

The previous paragraph shows that, on average, olive farms with organic certifica-
tion seem more efficient than those without organic certification. However, a propensity
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score matching needs to be performed to correctly attribute those observed differences
to the presence of the organic certification, or to identify the treatment effect of the or-
ganic certification. More specifically, the propensity score was estimated using a Probit
model including both structural and economic characteristics of farms as well as farmers’
socio-demographic profile. The dependent variable assumes a value of 1 if the farm was
organically certified and 0 otherwise. The variables included in the model closely corre-
spond to those previously recognized as notably different among the two groups of farms.
Moreover, the Probit model considers those characteristics that have been identified by
previous literature to be associated with the organic certification adoption [23–25,77–79].

The results indicate that the propensity for a farm to adopt organic certification is
positively influenced by the added value and the overall mechanic value, as well as the
mechanic value per hectare, the presence of higher quality of gross marketable output,
the presence of short-chain sales, and the hours of labor per hectare. Conversely, the
localization in the mountain, the hours of labor, the circulating agricultural capital per
hectare, the productivity of labor, and the availability of family labor decrease the farms’
propensity to become organic (Table 6).

Table 6. Estimates on probability to adopt organic certification.

Coeff. Std. Err. p-Value

Altimetry classification −0.285 0.132 0.030 **
Gender 0.029 0.180 0.873
Young 0.053 0.229 0.817

Added_value 0.908 0.288 0.002 ***
Mec_value 0.157 0.091 0.082 *

GMO_quality 0.868 0.377 0.022 **
UAA 0.244 0.370 0.509

Short_sc 0.497 0.284 0.081 *
Hours of labour −1.667 0.445 0.000 ***

Capes_UAA −0.006 0.002 0.007 ***
Land_prod 0.000 0.000 0.566
Lav_prod −0.052 0.020 0.008 ***
Activity 0.003 0.001 0.019 **

Labf −7.951 2.890 0.006 ***
Mecc_UAA 0.005 0.002 0.012 **

Mecc_UAA_square 0.000 0.000 0.001 ***
Geo_1 21.302 163.181 0.896
Geo_3 20.976 163.181 0.898
Cons −18.626 163.208 0.909

Obs. = 355; pseudo R2 = 0.16; * p-value < 0.1; ** p-value < 0.05; *** p-value < 0.001.

Table 7 shows the estimates for the average treatment effect on the treated (ATT)
based on the stratification matching and the nearest neighbor, respectively. The ATT
estimates show a positive effect of the organic certification on the farm TE of +0.06 with
the stratification method and +0.08 with the nearest neighbor method, representing in
percentage terms an increment in efficiency of around 10%.

Table 7. Organic certification average treatment effect on the treated (ATT) (stratification and nearest
neighbor matching (NNM)).

Method Number of Treated Number of Control ATT Std. Err. t

Strat. M 103 189 0.060 0.018 3.378
NNM 103 65 0.076 0.028 2.716

5. Discussion

Our results indicate that organic farming is positively associated with technical effi-
ciency in Italian olive farms. This outcome could be explained by considering that organic
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products benefit from a higher market price as consumers highly appreciate their quality
attributes [51,80]. With an interesting exception [81], several studies have shown that a
combination of lower input costs as well as a market premium reflecting the consumers’
willingness to pay for healthier and environmentally friendly food [82] make organic farms
more profitable than conventional ones [52,53,83].

Our findings also showed that all considered inputs of production, namely the work-
ing capital, the land capital, and labor, have a positive and significant effect on the GMO
of farms. These findings are consistent with previous studies in which the higher capital
endowment, both in terms of machines and financial capital, is a critical tool for enhancing
productivity at the farm level [79,84]. Mechanization increases the gross marketable output
through the timelessness of agricultural operations [85,86]. Conversely, un-mechanized
agriculture reveals a decrease in crop yield [87,88]. Furthermore, the availability of financial
capital helps increase the gross marketable output by purchasing inputs of production [89].
As for the labor, our results show a direct relationship with output in terms of GMO.
Harvesting olives by hand guarantees the best quality of olives, creating a better quality of
the final product [90] with a higher price of extra-virgin olive oil, which increases the gross
marketable output of the farm.

The negative effect of organic certification on technical inefficiency reveals a positive
association of organic certification with TE. This finding is in agreement with previous
studies [19,91] showing that organic certification improves farm economic performance by
increasing the yield or the price of the final product. At the same time, the result is opposed
to that reported by Beuchelt and Zeller [25], who highlighted organic coffee producers as
poorer than conventional ones. Farm localization, in terms of altimetry and geographic
area, has a significant effect on farm inefficiency. More specifically, if the farm is located in a
plain or a hilly area, the inefficiency decreases, while it increases if the farm is located in the
central regions [10,92]. Conversely to Julie and colleagues [93], according to whom there
are no differences in terms of technical efficiency between diversified and specialized farms,
our results are in agreement with Lakner and colleagues [43], showing that diversification
decreases technical efficiency in organic farms. This probably occurs because diversified
activities could be not adequately remunerated.

The higher impact of organic certification on TE is observed in smaller farms. This is
probably owing to the marketing strategy used by small farms [94]. Several authors found
that organic producers use direct marketing channels more than conventional producers,
thus enabling the producer to gain a premium price for the product [95–98]. In line with
what has just been said, we found that the determinants of conversion from conventional
to organic olive farms are the production and direct sales of a higher quality of GMO.
Indeed, consumers think that organic product is a “premium product”, healthy, and
environmentally friendly [80]. Moreover, farm labor intensity has a positive impact on the
propensity to become organic. In other words, our results have shown that farms with a
high ratio between hours of labor and UAA and with a high level of mechanization are
more prone to adopt organic certification. These findings are in line with those of Ferjani
and colleagues [99], according to whom farmers are skeptical about conversion when they
perceive organic farming needs extra work.

Our findings showed the main barriers of conversion from conventional to organic
olive farms, such as the following: (i) the localization in the mountain, (ii) the hours of labor,
(iii) the circulating agricultural capital per hectare, (iv) the productivity of labor, and (v) the
availability of family labor. The cultivation in a mountain area may discourage the organic
farming system adoption because pest and disease diffusion, as well as weed infestation,
are more difficult to control without the use of pesticides [7,99]. The altimetry may also be
a barrier to conversion if the farm is too far from the urban area and its customers, thus not
allowing for direct sales [100]. The endowment of financial capital per hectare discourages
farm conversion, probably because the availability of circulating agricultural capital helps
purchase chemical inputs of production [89], such as fertilizers and pesticides, allowed
in conventional agriculture. The productivity of labor reduces the propensity to become
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organic as the higher crop yield obtained in the conventional system [101,102] increases
farm output and, accordingly, labor productivity. As for the availability of family labor,
our result is different from those of several previous researchers [103,104], where organic
farming is associated with claims of high labor requirements compared with conventional
farms. However, a small part of the scientific literature suggests that labor use depends
on farm type and farm size [27,104]. In particular, following our finding, Tzouvelekas and
colleagues [27] show a lower use of labor in Greek organic olive farms, owing to less labor
required for harvesting the lower level of olive yield [27]. Accordingly, a farmer with a
high endowment of family labor is more reluctant to adopt organic certification.

6. Conclusions

In recent years, the scientific community and policymakers have agreed about new
challenges of agriculture, such as the production of healthy food, adaptation to climate
change, protection of natural resources, and landscape conservation. However, despite
a growing public awareness of the environmental and social importance of AFSs, the
adoption of cleaner agricultural practices (i.e., organic agriculture) is still scarce, even in
developed countries such as Italy.

The present paper aimed to identify potential barriers associated with organic cer-
tification adoption, analyzing the impact of the organic certification on the economic
performances of Italian olive farms, considering technical efficiency in particular. To this
end, we developed a stochastic frontier analysis assuming that environmental factors are
positively associated with the distance of each farm to the best practice function. The
statistical model considers the gross marketable output as the dependent variable, while
the working capital together with land capital and labor are the independent variables.
Furthermore, we included in the model specific environmental variables to assess the
technical inefficiency term. To quantify the effect of organic certification on TE without
sample selection bias or endogeneity problems, we designed a quasi-experimental study,
implementing a propensity score matching for making a comparison between organic and
conventional farms.

The findings showed that organic certification is positively and significantly associated
with a higher level of technical efficiency in Italian olive farms (around 10%). Accordingly,
it is critical to stimulate the adoption of organic certification in Italian olive farms as it is
a win–win alternative to the conventional system, both in economic and environmental
terms. The adoption of organic certification could enhance the competitiveness of small
and medium Italian farms, thus improving rural development.

Some limitations of the research concern the use of cross-sectional data; although the
sample was representative of the Italian olive farms, the cross-sectional design may to a
certain extent limit an exact identification of the organic certification effect. Moreover, our
estimates could benefit from the inclusion of more variables about the agricultural vocation
of the territory. Finally, our estimates do not consider possible sample selection bias on the
production function estimates. Thus, further studies may investigate the effect of organic
certification on different products and countries and on the economic performances over
time, using a panel dataset and trying to analyze different agro-food products.
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