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Abstract: Rice (Oryza sativa L.) is cultivated and consumed worldwide, but the contamination of

rice grains with trace metals (TMs) could cause adverse impacts on human health. The aims of this

study were to determine the concentrations of TMs in different rice varieties available for sale in

local markets and to determine whether consumers are likely to be at risk via the consumption of

these rice cultivars. For this purpose, samples of rice grains were collected from 12 rice growing

districts (administrative units) in Punjab, Pakistan. These districts were further classified based on

rice growing methods due to specific soil type. In conventional districts, the puddling method was

used, while direct seeding was used for rice cultivation in non-conventional districts. The samples

were collected and analyzed for the determination of essential (Cu, Fe, Zn, and Mn) and non-essential

(Cd, Ni, and Pb) TMs using an atomic absorption spectrophotometer (AAS). The results showed that

the maximum respective concentrations of Cd, Ni, and Pb (0.54, 0.05, 1.10 mg kg−1) were found in

rice grains in conventional areas, whereas values of 0.47, 0.20, and 1.20 mg kg−1 were found in non-

conventional rice growing areas. The maximum concentrations of essential TMs (Cu, Fe, Mn, and Zn)

were 4.54, 66.01, 4.82, and 21.51 mg kg−1 in conventional areas and 3.76, 74.11, 5.66, 19.63 mg kg−1 in

non-conventional areas. In the conventional rice growing areas, Fe and Zn concentrations exceeded

the permissible limits in the 27 and 7% samples, respectively. In the non-conventional rice areas,

the concentrations of Cu, Fe, and Mn exceeded the permissible limits in the 15, 26, and 3% samples,

respectively, while its Zn concentration was found within the permissible limits. The estimated

weekly intake (EWI) and maximum tolerable dietary intake (MTDI) values for all studied metals

were found within the permissible values set by WHO, except for Fe, in both sampled areas. It was

concluded that no health risks were associated by utilizing the rice grains. However, the mean values

of TMs were found considerably higher in collected rice samples from non-conventional areas than

the conventional areas. Therefore, the concentrations of TMs should be monitored properly.

Keywords: fine and coarse rice; food chain; health risks; metals contamination

1. Introduction

Trace metals (TMs) pollution has become a serious problem worldwide. There is a
continuous buildup of TMs in agricultural soils through the application of solid waste and
low quality irrigation water [1,2]. The continued use of raw or partially treated wastewater
for growing fodder and cereals has resulted in the contamination of food crops, and thus
their entry into the food chain [3,4]. The TMs in soils could contaminate the environment
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and damage human health through various exposure pathways, including direct ingestion,
dermal contact, and inhalation [5]. TMs concentration in edible parts of several crops such
as spinach, clover, grape vines, shrubs, barley, and wheat have been reported by various
reports [6–8]; thus, the risk to humans of excessive TMs in edible parts of food crops should
be a matter of concern. The crops absorb these metals from contaminated soils through
their roots or from surface-deposited particles [9]. As TMs in crops enter the human body
through the food chain and present health risks to humans, food consumption is also an
important exposure pathway [10]. Vitamin C, Fe, and other nutrients stored in the body
are significantly decreased if humans consume food contaminated by these TMs, leading to
a decline in immunity, a deterioration of human function, and disabilities associated with
malnutrition [9,11].

As rice is fast growing crop and produces large biomasses, several studies have
indicated that rice grown in TM-contaminated soils have higher concentrations of metals
than those grown in un-contaminated soils [12,13]. In un-contaminated soils, a major
pathway of soil contamination is through the atmospheric deposition of TMs from point
sources such as mining, smelting, and industrial activities [14]. Other sources of agricultural
soil contamination include agricultural inputs such as fertilizers, pesticides, sewage sludge,
organic manures, and composts [15,16]. Therefore, some eco-friendly alternatives could
be applied for clean production and sustainable cultivation. The sustainable production
of quality food for mankind is a big challenge of the era. Biofertilizers are being used to
not only improve the yield but also improve the nutrition status of crop plants. Scientists
are using nitrogen-fixing bacteria along with phosphorus-fixing bacteria and getting good
results [17]. The use of biofertilizers and compost instead of chemical fertilizers improves
soil health and decreases TM contamination in soil, improving plant quality [18]. The
balanced use of fertilizer is very effective technique in producing crops and fulfilling their
deficiencies [19]. Rice is a major staple food in many countries, particularly in Asian
countries such as Bangladesh, India, Thailand, China, Pakistan, and Vietnam, where soil
and groundwater pollution with high levels of TMs have been reported [20–23]. Increased
levels of TMs in agricultural soils and their uptake in rice, vegetables, and other food
crops have become a real health issue in this region [24]. A significant number of studies
have focused on studying TM concentrations in Pakistani, Bangladeshi, Chinese, and
Indian food items including vegetables [25–28]. The work of Wasim et al. [29] assessed the
TM concentrations in rice, but sampling was performed only from one site, i.e., Karachi,
Pakistan. Additionally, this study did not involve different rice growing districts and
comparisons between conventional and non-conventional rice growing areas from Punjab,
Pakistan. The conventional rice growing areas of Punjab are Sheikhupura, Gujranwala,
Hafizabad, Sialkot, Narowal, and Gujranwala; rice is grown using the puddling method
because of the specific soil type (clay loam), as clay loam soil puddling is easy due to the
water retention capacity of soil. However, soil puddling enhances the possibility of TM
availability to the plants, as the metals could be solubilized in the water and converted
into the more available forms to the plants [30], i.e., zinc sulphide (ZnS) can be converted
to cadmium sulphide (CdS) with the exchange of their ions during this practice. The
non-conventional rice growing areas are Bahawalnagar, Chiniot, Jhang, Toba Tek Singh,
Shorkot, and Mandi Bahauddin; rice is usually grown by using the direct seeded method
because the soil is sandy loam. However, soil puddling is difficult in sandy loam because
water retention and anaerobic conditions are not possible, moreover, TMs are leached
down in these types of soils, thereby reducing the risks of TM contamination. Thus, there
is a possibility that conventional rice growing areas could have more TM concentrations
than the non-conventional growing areas. This study is based on the same hypothesis,
i.e., TMs could behave differently due to the use of conventional and non-conventional
rice growing techniques. Previous studies have not reported on this aspect along with the
potential health risks to humans. Therefore, the objectives of the present study were to:
(a) determine the concentrations of TMs in different rice varieties available for sale in local
markets, produced from different conventional and non-conventional rice growing areas of
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Punjab, Pakistan; and (b) whether consumers are likely to be at risk of TM exposure via the
consumption of these rice cultivars.

2. Materials and Methods

2.1. Sampling

This experiment was conducted to find out the concentrations of different essential
(Cu, Fe, Mn, and Zn) and non-essential (Cd, Ni, and Pb) TMs in different types of crop
(rice) varieties available in markets from conventional and non-conventional rice growing
areas of Punjab, Pakistan. Fifty-five (55) rice samples (in triplicate) from conventional
and non-conventional rice growing districts (6 conventional: Sheikhupura, Gujranwala,
Hafizabad, Sialkot, Narowal, and Gujranwala; 6 non-conventional: Bahawalnagar, Chiniot,
Jhang, Toba Tek Singh, Shorkot, and Mandi Bahauddin) of Punjab, Pakistan were collected
during the month of January 2015 (Figure 1, Table 1).

 

− EWI = Crice ×WCriceBW
−

− ≈

− −

Figure 1. Base map showing sampling districts of Punjab, Pakistan.

Table 1. Coordinates of sampling sites.

Sr. No. Sampling Location Longitude Latitude

1 Chiniot 31.710762 72.992123
2 Bahawalnagar 29.613738 73.137526
3 Jhang 30.843993 71.850886
4 Shorkot 30.844500 72.085357
5 Toba Tek Singh 30.970966 72.479624
6 Faisalabad 31.413924 73.074134
7 Narowal 32.096795 74.862740
8 Gujranwala, 31.982594 74.130777
9 Mandi Bahauddin 32.597835 73.476281
10 Hafizabad 32.052014 73.659907
11 Sialkot 32.386376 74.408410
12 Sheikhupura 31.715192 73.982211

The collected rice varieties were preferred to be cultivated by the farmers of the
respective sampling districts. The collected samples details (sampling district, rice variety,
and sample ID) are given in Supplementary Table S1. The collected samples were stored
at 4 ◦C prior to further processing. All samples were washed with tap water (three times)
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followed by deionized (DI) water twice. The samples were then dried in open air for 24 h
and in an oven at 65 ± 5 ◦C for 48 h. Then, the samples were homogenized by grinding
with a ceramic mortar and pestle and processed for metals analysis.

2.2. Sample Preparation and Analysis

One gram of ground grain sample was taken in a 25 mL conical flask and kept
overnight by adding 10 mL of digestion mixture (2:1 ratio of HNO3 and HClO4, respec-
tively). The next day, samples were digested by placing on a hot plate at a temperature of
250 ± 5 ◦C until a clear solution was obtained. Following digestion, tubes were removed,
and the samples were diluted to 20 mL with DI water after cooling. Prior to analysis, all
samples were filtered through 0.45 µm filter paper (Whatman No. 41). A flame AAS (Solaar
S-100, CiSA) was used for the determination of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in rice
samples (AOAC, 1990). Elemental concentrations in rice were determined on a dry weight
basis.

2.3. Quality Control

The blank reagents and standard reference materials such as Batch 1701-3, BCR no.
150 and Fluka Kamica, Busch Switzerland were used to verify the accuracy and precision
of the digestion procedure and subsequent analyses. Each sample batch was analyzed in
triplicate under the standard operating conditions within the confidence limit of 95%. The
validity of the method was further ascertained by cross method checks, spiked recovery,
and replicate analysis.

2.4. Health Risk Assessment

The potential human health risk assessment was conducted by considering the follow-
ing parameters according to Onsanit et al. [31]. The estimated weekly intake (EWI) and
provisional tolerance weekly intake (PTWI) were jointly established by FAO/WHO [32].
The EWI (mg kg−1 body weight/week) was calculated using the following equation:

EWI = Crice ×
WCrice

BW

where C rice = average trace metal concentrations in rice (mg kg−1 dry weight), WCrice = weekly
rice consumption (g week−1) per capita (18 kg/capita/year or ≈50 g per capita per day × 7)
(PACRA, 2020), and BW = average body weight (kg) of the Pakistani population (72 kg).
The values are expressed in mg week−1 person−1. The calculated EWI values were com-
pared with levels for typical daily exposure and provisional tolerable weekly intake (PTWI)
set by the Codex committee on food additives and contaminants of the joint FAO/WHO
food standards program for TM.

2.5. Statistical Analysis

XLSTAT 2018 and Origin 2018 were used for the descriptive statistics and further anal-
ysis. Data presented as means ± SD. The Pearson correlation heatmap with dendrograms
was developed using Origin v2018 (Origin Lab Corp., Northampton, MA, USA).

3. Results

The mean and range of TM concentrations in rice grains from different conventional
and non-conventional growing areas are presented in Supplementary Information (SI)
Table S1. All the permissible limits set by WHO/FAO are presented in Table 2 for reference
and comparison to our data presented in this paper. The weekly intake rates of essential
and non-essential metals are presented in Table 3.
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Table 2. Permissible limits of trace metals in rice grains.

Metals
Minimum Value Maximum Value Limits

(mg kg−1) References
CA * NCA ** CA * NCA **

Cd 0 0.10 0.54 0.47 0.2

WHO/FAO
[29]

Pb 0.12 0.30 1.10 1.20 0.2

Ni 0 0.01 0.05 0.20 1.0

Fe 25.43 31.11 66.01 74.11 15–50

Cu 1.13 1.01 4.54 3.76 4–15

Zn 12.61 12.74 21.51 19.63 20

Mn 1.05 1.13 4.82 5.66 05

* Conventional Rice Growing Areas; ** Non-Convention Rice Growing Areas.

Table 3. EWI rate of essential and non-essential metals.

Rice Growing Area

Estimated Weekly Intakes (EWI)

Essential Metals Non-Essential Metals

Cu Fe Mn Zn Cd Ni Pb

Non-conventional 18.27 360.25 27.51 95.42 2.28 0.97 5.83

Conventional 22 321 23.43 105 2.65 0.24 5.34

EWI by WHO 70 * 315 * 77 * 280 * 7 35 25

EWI: estimated weekly intake for toxic elements, based on WHO guidelines. * There is no PTWI set for Cu, Fe,
Mn, and Zn, but it is used as MTDI in mg kg−1 body weight in a week).

3.1. Trace Metal Concentration in Rice Grains from Non-Conventional Growing Areas

3.1.1. Essential Metals

There were six non-conventional rice growing areas (Bahawalnagar, Chiniot, Jhang,
Shorkot, Toba Tek Singh and Faisalabad), from which we collected rice samples. From
non-conventional rice-producing areas, the highest Cu, Fe, Mn, and Zn concentrations in
the rice samples were recorded having values of 3.76, 74.11, 5.66, and 19.63 mg kg−1, re-
spectively. The average Cu concentrations were 2.16, 1.57, 1.79, 2.16, 2.93, and 3.25 mg kg−1

in Bahawalnagar, Chiniot, Jhang, Shorkot, Toba Tek Singh, and Faisalabad, respectively.
Iron (56.38, 40.45, 38.58, 33.90, 36.65, and 50.10 mg kg−1), Mn (2.00, 2.46, 3.32, 2.41, 3.54, and
3.84 mg kg−1), and Zn (16.75, 15.34, 16.72, 16.66, 17.54, and 16.35 mg kg−1) concentrations
were recorded, respectively (Figure 2).

3.1.2. Non-Essential Metals

From non-conventional rice-producing areas, the highest Cd, Ni, and Pb concentra-
tions in collected rice samples were recorded having values of 0.47, 0.20, and 1.20 mg kg−1,
respectively. The average Cd concentrations were recorded as 0.23, 0.20, 0.31, 0.28, 0.31, and
0.24 mg kg−1 in Bahawalnagar, Chiniot, Jhang, Shorkot, Toba Tek Singh, and Faisalabad,
respectively. Average Ni (0.08, 0.06, 0.02, 0.04, 0.01, and 0.01 mg kg−1) and Pb (0.59, 0.88,
0.84, 0.98, 0.92, and 0.87 mg kg−1) concentrations were found in the same order of the rice
growing areas, respectively (Figure 3).
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Figure 2. Concentrations of (a) Cu, (b) Fe, (c) Mn, and (d) Zn in rice grain samples from non-

conventional rice growing districts; Bahawalnagar, Chiniot, Jhang, Shorkot, Toba Tek Singh (T.T.

Singh), and Faisalabad, respectively; No. of bars show no. of samples taken from each district, and

height shows metals’ concentrations; error bars show standard deviation.
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Figure 3. Concentrations of (a) Cd, (b) Ni, and (c) Pb in rice grain samples from non-conventional rice

growing districts; Bahawalnagar, Chiniot, Jhang, Shorkot, Toba Tek Singh (T.T. Singh), and Faisalabad,

respectively; No. of bars show no. of samples taken from each district, and height shows metals’

concentrations; error bars show standard deviation.

3.2. Trace Metal Concentration in Rice Grains from Conventional Rice Growing Areas

3.2.1. Essential Metals

From conventional rice-producing areas, the highest Cu, Fe, Mn, and Zn concen-
trations in collected rice samples were recorded as 4.54, 66.01, 4.82, and 21.51 mg kg−1,
respectively. The average concentrations of Cu were found as 2.12, 2.89, 2.74, 1.97, 3.62,
and 2.21 mg kg−1 in Narowal, Gujranwala, Hafizabad, Mandi Bahauddin, Sialkot, and
Sheikhupura, respectively. Iron (42.75, 48.31, 34.00, 44.70, 45.19 and 45.81 mg kg−1), Mn
(2.53, 2.89, 1.99, 2.76, 4.37, and 3.89 mg kg−1), and Zn (18.69, 14.64, 14.74, 16.51, 15.87
and 16.59 mg kg−1) concentrations were found in the same order of the conventional rice
growing areas, respectively (Figure 4).
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Figure 4. Concentrations of (a) Cu, (b) Fe, (c) Mn, and (d) Zn, in rice grain samples from conventional

rice growing districts; Sialkot, Gujranwala, Hafizabad, Mandi Bahauddin, Narowal, and Sheikhupura,

respectively; No. of bars show no. of samples taken from each district, and height shows metals’

concentrations; error bars show standard deviation.
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3.2.2. Non-Essential Metals

From conventional rice-producing areas, the highest Cd, Ni and Pb concentrations in
the collected rice samples were recorded as 0.54, 0.05, and 1.10 mg kg−1, respectively. The
average concentrations of Cd were found as 0.37, 0.31, 0.09, 0.29, 0.30, and 0.36 mg kg−1

in Narowal, Gujranwala, Hafizabad, Mandi Bahauddin, Sialkot, and Sheikhupura, respec-
tively. Nickel (0.02, 0.01, 0.01, 0.02, 0.01, and 0.02 mg kg−1) and Pb (0.85, 0.82, 0.80, 0.66,
0.78 and 0.81 mg kg−1) concentrations were found in the same order of the conventional
rice growing areas, respectively (Figure 5).
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Figure 5. Concentrations of (a) Cd, (b) Ni, and (c) Pb in rice grain samples from conventional rice

growing districts; Sialkot, Gujranwala, Hafizabad, Mandi Bahauddin, Narowal, and Sheikhupura,

respectively; No. of bars show no. of samples taken from each district, and height shows metals’

concentrations; error bars show standard deviation.
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3.3. Relation between the Toxic Metals

Table 4 shows the Pearson correlation (R) between essential and non-essential toxic
metals found in rice grains from conventional and non-conventional rice growing areas.
At both places, the TMs displayed varied responses. In non-conventional areas, Cd had a
significant positive effect with Zn (R2 = 0.22, p < 0.01) and Cu (R2 = 0.34, p < 0.01), whereas
Ni had positive relation with Fe (R2 = 0.47, p < 0.05), as well as Cd with Pb (R2 = 0.35,
p < 0.05). In the conventional areas, although the R2 showed slight effect, the Zn had a
significant positive effect on Mn (R2 = 0.14, p < 0.01), Cd had positive relationship with Fe
(R2 = 0.27, p < 0.01), Mn (R2 = 0.23, p < 0.01) and Zn (R2 = 0.18, p < 0.01), while Ni also had
positive relation with Cd (R2 = 0.30, p < 0.01).

Table 4. Correlation matrix of metals in rice grains from conventional and non-conventional grow-

ing areas.

Metals
Essential Metals Non-Essential Metals

Cu Fe Mn Zn Cd Ni Pb

Metal concentrations in rice grains from non-conventional growing areas

Cu 1.00
Fe 0.30 1.00
Mn 0.14 −0.02 1.00
Zn 0.00 0.05 0.00 1.00
Cd 0.34 * 0.08 0.11 0.22 ** 1.00
Ni −0.15 0.47 * −0.22 0.40 * −0.21 1.00
Pb 0.23 −0.28 0.30 −0.21 0.35 * −0.42 1.00

Metal concentrations in rice grains from conventional growing areas

Cu 1.00
Fe −0.10 1.00
Mn −0.01 −0.11 1.00
Zn −0.42 −0.20 0.14 ** 1.00
Cd −0.11 0.27 * 0.23 * 0.18 * 1.00
Ni −0.18 −0.02 −0.10 0.09 0.30 * 1.00
Pb 0.01 −0.03 −0.19 0.12 −0.03 −0.38 1.00

* Values with single asterisk are statistically significant at p < 0.00; ** values with double asterisk are statistically
significant at p < 0.005.

3.4. Principal Component Analysis and Heatmap

The first three components of the PCA accumulated 61.7% of the total variance (Figure 6).
The first principal component explained 24.4% of the variance and reflected the negative
coordination with Pb and positive with Ni. The second principal component explained
19.0% of the variance and reflected a covariation of Zn and Cd with loading factors of 0.75
and 0.67, respectively. The third principal component explained 18.3% of the variance and
was linked to Fe and Cu (loading factor 0.78 and 0.56). The biplot shows the overlapping
of the confidence eclipse for conventional and non-conventional rice growing areas that
means the differences in metal concentrations, with respect to areas, were non-significant.
The points near the lines originating from the center depicted higher values as compared to
distant points. The heat map (Figure 7) gives the clearer grouping of metals on the basis of
the Pearson’s correlation. It can be seen from Figure 5 that Pb and Cu; Mn, Cd, and Zn; and
Ni and Fe were grouped together in three clusters.
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Figure 6. Principal component analysis of studied metals analyzed in rice varieties grown at con-

ventional and non-conventional rice growing areas of Punjab Pakistan. (a) Biplot between PC1,

PC2, and PC3. The blue lines originating from central point of biplot indicate positive or negative

correlations of different metals. The black and red dots represent the tested collected rice samples

from conventional and non-conventional areas, respectively. Gray and pink circles represent the

95% confidence eclipse for conventional and non-conventional areas. (b) Variance decomposition of

principal components.

C
u Pb M
n

C
d Zn Fe N
i

BWP-1
BWP-2
BWP-3
BWP-4
JHG-6
MBD-3
BWP-5
SLK-6
CHT-1
HFZ-2
GRW-1
HFZ-4
CHT-2
HFZ-1
CHT-3
JHG-5
SHK-2
CHT-6
JHG-1
JHG-4
GRW-4
SKP-1
MBD-1
JHG-2
MBD-4
SLK-1
TTS-1
TTS-2
FSD-1
NRW-1
FSD-3
SKP-4
SHK-1
CHT-4
MBD-2
GRW-3
FSD-2
GRW-2
NRW-2
NRW-3
NRW-4
CHT-5
SHK-3
HFZ-3
JHG-3
SKP-2
SKP-3
SHK-4
SLK-5
SLK-2
SLK-3
SLK-4
BWP-6

-3.56

-2.49

-1.43

-0.358

0.710

1.78

2.84

3.91

4.98

Figure 7. The Heatmap based on Pearson’s correlation.



Sustainability 2023, 15, 7259 12 of 16

4. Discussion

4.1. Sources of Metals in Rice Growing Areas of Pakistan

Agricultural soil contaminations with TMs have gradually increased in the last decade
due to urban sprawl, population increase, and industrialization [33,34]. It is considered a
major global environmental issue because of their persistence and associated risks to both
the biotic and abiotic factors of the environment. Trace metals such as Cd, Cu, Fe, Mn, Ni, Pb,
and Zn are naturally present in soil through rocks weathering and volcanic eruptions, but
their concentrations may be locally elevated as a result of nearby anthropogenic activities
such as mining, resource extraction, industrial and vehicular emissions, etc. [35,36]. Addi-
tionally, soil preparation, crop growing, and management practices also greatly influence
the TM concentration in rice growing areas. In conventional rice growing areas, puddling
is done before the rice nursery transplanting. Puddling could increase the bioavailability
of TMs to rice crop by enhancing their solubilization [30]. Higher concentrations of TMs
in agricultural soils are responsible for their transfer from soil to food crops and grains,
leading into long-term risks to the ecosystem. Vegetables, grains, and other essential foods
may have a range of toxic and essential trace metals [37,38].

Additionally, TM pollution in rice growing areas is attributed to adjacent industrial
sites and their effluent’s use to irrigate agricultural soils in Pakistan, as indicated by
Nawaz et al. [39], Azam et al. [40], and Qi et al. [41]. In addition to the use of industrial
wastewater for irrigation, some farmers are over-using fertilizers and pesticides recom-
mended for crop growth [42,43]. Phosphatic fertilizers are a rich source of Cd, and their
repetitive application results in the magnification of Cd in soil and the edible parts of
plants [44,45]. Moreover, submerged conditions during rice growth and development
stages result in more mobility of TMs in soil solutions and their translocation to plants’
vegetative and edible parts [46,47].

4.2. Non-Essential Metals in Rice

Cadmium is a metallic element that occurs naturally at low levels in the environment.
Food, rather than air or water, represents the major source of Cd exposure [48,49]. The
highest Cd concentration in the rice grains was found as 0.54 mg kg−1 (Supplementary
Table S1). Cd concentrations in all the rice samples in the present study ranged from 0 to
0.47 mg kg−1. The Cd concentration ranged from 0 to 0.54 in conventional areas, while it
was 0.10–0.47 mg kg−1 in non-conventional sites. Thus, the mean Cd concentrations were
considerably higher in non-conventional areas as compared to conventional areas. The Cd
concentrations in rice samples from non-conventional areas were found higher than the
WHO limits in Bahawalnagar and Chiniot (33%), Jhang (100%), 75% of the samples from
Shorkot, and 100% samples from Toba Tek Singh and Faisalabad, respectively. These results
are supported by the previous work of Dehghani and Mosaferi [50], who found higher
Cd and Pb concentrations in imported Pakistani rice grains available in Irani markets
and Cd, Cr, Ni, Fe, and Pb in Shakargarh Tehsil, District Sialkot, Pakistan [51]. This is
probably due to fact that non-conventional areas receive relatively more contaminated
irrigational water as compared to conventional areas. The conventional areas fall in upper
Punjab, Pakistan, which has more slopes compared to the non-conventional areas (higher
than sea level, due to which the water flow is high, minimizing the chances of water
contamination) [52]. Secondly, conventional areas are not densely populated and are mainly
agricultural lands [53], thus the risks of water contamination from sewage effluents are rare.
In contradiction, the rice in non-conventional areas is mostly grown in the peri-urban areas
and regularly receives sewage water for use in irrigation. The maximum concentrations of
Cd in rice from conventional areas were found to be higher in 75% samples from Narowal,
100% from Gujranwala, 25% from Hafizabad, and 100% in Mandi Bahauddin, Sialkot, and
Sheikhupura. Khan et al. [33] reported similar results of TM (Cd, Pb and Ni) contaminations
in the Khyber Pakhtunkhwa Province of Pakistan. Nickel concentrations in rice grains
from conventional areas of Punjab, Pakistan were 0–0.05 and 0.01–0.05 mg kg−1 in non-
conventional areas. All the samples collected from conventional and non-conventional
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areas remained within the permissible limits (1.0 mg kg−1) of the WHO. Lead ranged
from 0.12 to 1.10 and 0.30 to 1.20 mg kg−1 in conventional and non-conventional areas,
respectively. All the samples from non-conventional areas exceeded Pb concentration
limits in rice prescribed by WHO (except one sample from Mandi Bahauddin), indicating
a significantly higher Pb pollution level in the Punjab. The higher Pb levels could be due
to the aerial deposition of Pb from vehicular emissions and their subsequent entry to rice
grains through plant tissues and mixing in soil solution and uptake [54].

4.3. Essential Metals in Rice

Copper concentration in rice grains was found highest (4.54 mg kg−1) in conventional
areas (Figure 4). A previous study by Xu et al. [55] reported a mean Cu concentration in
Chinese rice of up to 18 mg kg−1, which is considerably higher than that found in the
present study. Mean Mn concentrations in the conventional and non-conventional areas
were 43.57 and 44.03 mg kg−1, respectively. It was notable that Mn concentrations in
the rice samples exceeded permissible limits. Roychowdhury [56] reported a mean Mn
concentration of 9.9 mg kg−1 in rice in West Bengal, India. The mean Zn concentrations in
rice in the present study did not differ significantly for different areas. The highest mean
Zn concentration (16.42 mg kg−1) in rice grains was found in the conventional area, which
was comparable to that in the non-conventional areas’ rice grains 16.41 mg kg−1.

4.4. Health Risk Assessment

As peer reviewed data on all the parameters used for the health risk assessment
of rice in this study are not available, we could not estimate the health risks associated
with the consumption of essential metals (Cu, Fe, Mn, and Zn), but we calculated the
health risks associated with consumption of non-essential metals (Cd, Pb, and Ni) through
comparing PTWI values devised by the FAO/WHO. The same procedures were used by
Naseri et al. [57] and Ghoreishy et al. [58] in Iran. Based on the results, it was recorded
that the EWI of the samples from both areas fell within the permissible limits, except for
Fe, whose EWI limits exceeded the MTDI in the conventional as well as non-conventional
areas (Table 3).

5. Conclusions

In this study, most of the mean metal concentrations (Cd, Pb, Fe, Zn, and Mn) were
found to be substantially higher in conventional rice growing areas, followed by non-
conventional areas. Specifically, the mean Cd concentrations were considerably higher in
rice grains collected from non-conventional areas compared to conventional rice growing
areas. The Cd, Pb, and Ni concentrations in rice samples from non-conventional areas were
found higher than the WHO limits in the 70, 100, and 0% collected samples, respectively.
In conventional areas, Cd, Pb, and Ni concentrations were found higher than WHO limits
in the 77, 99, and 0% samples, respectively. A health risk assessment indicated that all the
EWI and/or MTDI values were found within the permissible values set by the WHO due
to less rice consumption by Pakistani people, except for Fe in both areas.
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