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Abstract—Psoriasis has emerged as a systemic disease characterized by skin and joint mani-
festations as well as systemic inflammation and cardiovascular comorbidities. Many pro-
gresses have been made in the comprehension of the immunological mechanisms involved 
in the exacerbation of psoriatic plaques, and initial studies have investigated the mechanisms 
that lead to extracutaneous disease manifestations, including endothelial disfunction and car-
diovascular disease. In the past decade, the involvement of gut dysbiosis in the development 
of pathologies with inflammatory and autoimmune basis has clearly emerged. More recently, 
a major role for the skin microbiota in establishing the immunological tolerance in early life 
and as a source of antigens leading to cross-reactive responses towards self-antigens in adult 
life has also been evidenced. Gut microbiota can indeed be involved in shaping the immune 
and inflammatory response at systemic level and in fueling inflammation in the cutaneous 
and vascular compartments. Here, we summarized the microbiota-mediated mechanisms that, 
in the skin and gut, may promote and modulate local or systemic inflammation involved in 
psoriatic disease and endothelial dysfunction. We also analyze the emerging strategies for 
correcting dysbiosis or modulating skin and gut microbiota composition to integrate systemi-
cally existing pharmacological therapies for psoriatic disease. The possibility of merging 
systemic treatment and tailored microbial modifying therapies could increase the efficacy 
of the current treatments and potentially lower the effect on patient’s life quality.
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INTRODUCTION

Psoriasis is an inflammatory disease of the skin 
that affects about 2%  of the population. The cutaneous 
form of the disease is associated with important systemic 
manifestations and in up to 30% of cases, with psoriatic 
arthritis (PsA) [1–3].

Regarding the pathogenesis, psoriasis is a com-
plex disease with a strong genetic basis and an auto-
immune component. The formation of the psoriatic 
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plaques is based on the interaction between keratino-
cytes, T cells, dendritic cells, and cells of the microvas-
cular endothelium. This interaction is initially triggered 
by external events that generate an inflammatory cycle 
that self-sustains developing around the axis TNFα/
IL-23/IL-17 [4, 5].

External triggering events are represented by mech-
anostressors, drugs, and exposure to UV light that in 
keratinocytes cause the production of LL-37 antimicrobial 
peptide and self-DNA release.

The uptake of the complexes LL-37-self-DNA/
RNA, by myeloid dendritic cells (mDC) or plasmacytoid 
DC (pDC), leads to the secretion of TNFα, IL-23, and 
IL-12 by mDCs and IFNα by pDCs through the stimula-
tion of TLR7/8 and TLR9 [6, 7].

CD11c+ inflammatory mDCs are present at higher 
frequency in psoriatic lesions and express TNFα, IL-23, 
and iNOS. DCs activated by antigen encounter migrate to 
lymph nodes draining the cutaneous compartment and can 
prime naïve T driving their polarization towards Th17/
Tc17 phenotype, through the production of IL-1β, IL-6, 
and IL-23 and towards a Th1/Tc1 phenotype through the 
production of IL-12 [8–13].

IL-17A produced by Th17/Tc17 cells is a key 
player in psoriasis pathogenesis; it acts on keratinocytes 
by inducing the secretion of chemokines and inflamma-
tory molecules that can recruit neutrophils, macrophages, 
and more T cells to the site of inflammation [14]. Impor-
tantly, Th17 cytokines such as IL-22 also directly act on 
keratinocytes to stimulate proliferation leading to acan-
thosis and favoring the establishment of a positive feed-
back loop [15–20].

Psoriasis has also an autoimmune component iden-
tified through the detection of T cells reactive to self-
antigens. This includes the antimicrobial peptide LL-37, 
ADAMTSL5 derived from melanocytes, the PLA2G4D 
lipid antigen, and keratin 17 [21, 22].  CD8+ T cells resid-
ing in the epidermis and expressing both IFNγ and IL-17 
have been indicated as key players in the autoimmune 
response in psoriasis patients as they are present at the 
site of disease recurrence [23, 24].

Furthermore, evidence provided in the last years 
supports a role of T cells recirculating from the skin 
and specific for self-antigens as one of the missing 
links between psoriasis and its extracutaneous mani-
festations [25, 26].

This review is aimed at providing an overview of 
mechanisms through which alteration in skin and gut 
microbiome could be involved in the development of 

psoriasis and the possible association with cardiovascular 
comorbidities and other systemic diseases. This discus-
sion sets the stage for a critical evaluation of microbial 
modifying therapeutic approaches to contrast, at least in 
part, psoriasis exacerbation.

PSORIASIS AND CARDIOVASCULAR 
COMORBIDITY

Psoriasis is associated with cardiovascular comor-
bidities and independently increases cardiovascular risk. 
It is now considered a systemic inflammatory condition 
that finally can lead to insulin resistance and endothelial 
dysfunction linked to cardiovascular disease [27].

The biomarkers of inflammation such C-reactive 
protein, ESR (erythrocyte sedimentation rate), and 
P-selectin were found to be increased in the blood of 
patients with psoriasis and to correlate with disease 
severity. In addition, imaging techniques showed sites 
of inflammation in extracutaneous tissues [28–30]. In 
particular, Mehta and coworkers evidenced vascular 
inflammation in patients with psoriasis, through F-fluoro-
deoxyglucose positron emission tomography computed 
tomography (PET-CT) [31, 32].

Endothelial dysfunction, defined as the inability 
for arteries to dilate, considered the first step towards 
formation of atherosclerotic plaques [33], has also 
been documented in psoriasis patients. Specifically, 
there is evidence of a correlation between the severity 
of the disease and the markers of endothelial dysfunc-
tion such as asymmetric dimethylarginine (ADMA), 
reduced levels of circulating endothelial progenitor 
cells, and integrity of the glycocalyx [34]. Immuno-
logical mechanisms shared by psoriasis and athero-
genesis may partly explain this phenomenon, and it is 
increasingly evident that therapies for psoriasis target-
ing soluble cytokines involved in both psoriasis and 
atherosclerosis mechanisms can potentially reduce the 
risk of cardiovascular events [35].

To explain the association between psoriasis and 
cardiovascular comorbidities, Boehncke and colleagues 
have introduced the concept of “psoriatic march” that 
proposes a role for the soluble inflammatory mole-
cules released from the skin to the systemic circula-
tion. Along this line, in psoriasis patients, it has been 
observed that the cardiovascular risk correlates with 
the severity of the disease and duration of psoriasis 
[2, 36–42].
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Importantly, studies in mouse models have provided 
evidence of a causal link between chronic skin inflamma-
tion and vascular inflammation [43]. The mouse model 
K14-IL-17Aind/+ overexpressing IL-17A in keratinocytes 
developed a severe form of psoriasis-like inflammation 
that was associated with increased  CD11b+ proinflamma-
tory myeloid cells in the circulation and with increased 
reactive oxygen species as well as endothelial dysfunc-
tion [44]. These findings strongly support the clinical 
evidence that severity and duration of cutaneous inflam-
mation can also influence vascular inflammation [45].

To this end, it is important to notice that psoriasis 
patients also have increased number of circulating T cells 
producing IL-17 and increased levels of IL-17 A in the 
blood serum compared to healthy controls [46]. Therefore, 
it is possible that T cells egressing from the skin to reach 
the systemic circulation could represent a mechanism that 
links psoriasis with its extracutaneous manifestations.

The analysis of the transcriptome in biopsies 
from psoriatic skin lesions and atherosclerotic plaque 
biopsies indeed shows that TNFα, IFNγ, and IFNγ-
induced genes were upregulated to a similar level in 
psoriasis and atherosclerosis therefore representing 
putative common pathogenic mechanisms [47]. Con-
versely, the genes encoding IL-17A and CCL20 were 
expressed at higher level in psoriatic skin than in ath-
erosclerotic plaques. In atherosclerotic plaques, the 
level of IL-17A expression associates with neutrophil 
infiltration suggesting that the axis IL-17A/neutrophils 
is involved in atherogenesis. Nevertheless, the overall 
effect of IL-17A in cardiovascular comorbidity associ-
ated with psoriasis is still partially unclear [47–49].

DYSREGULATION OF SKIN MICROBIOME 
IN PSORIASIS

Skin, the largest organ of the body that provides 
a physical barrier to injury and microbial insults, har-
bors abundant and diverse collection of millions of bac-
teria, fungi, and viruses. Skin microbiome bacteria are 
mostly from Firmicutes, Actinobacteria, Bacteroidetes, 
and Proteobacteria phyla [50]. Due to variations in tem-
perature, moisture, and pH value of the skin at different 
body regions, each site provides a unique colonization 
environment and, therefore, favors the survival of some 
bacteria over others.

The commensal bacteria present in the skin under 
normal conditions favor the maintenance the immuno-
logical homeostasis through mechanisms that include 
induction of tolerogenic dendritic cells in early life and 
priming of regulatory T cells protecting from immune 
responses towards commensal-derived antigens. Emerg-
ing evidence indicates that skin dendritic cells can present 
antigens from skin microbiota and that this mechanism, 
in neonatal life, is essential to correctly develop tolerance 
to commensals [51, 52]. For this reason, a decrease of 
commensal bacteria and the increase of non-commensal 
species could alter the skin immune homeostasis, favor-
ing the generation of inflammatory responses and leading 
to impaired barrier functions [53].

Analysis of the skin microbiome in psoriatic 
plaques and normal skin of patients with psoriasis as well 
as in the skin of healthy subjects indicated, as a major 
variation, a decrease in microbial diversity in psoriatic 
plaques. Specifically, there was a variation in the relative 
abundance of Firmicutes, Actinobacteria, and Proteobac-
teria with a prevalence of Firmicutes in psoriatic skin 
lesions and a significantly lower level of Actinobacteria 
compared to healthy and non-lesional skin. Other stud-
ies report a decreased representation of Cutibacterium, 
Burkholderia spp., and Lactobacilli in psoriatic skin. 
By contrast, the abundance of Corynebacterium was 
increased in lesional skin and associated with the sever-
ity of inflammation [54, 55]. An increased abundance 
of Streptococcus spp. in psoriatic skin has also been 
reported whereas Staphylococcus epidermidis was more 
common in normal skin [53, 56]. Streptococcal infec-
tions have been known for a long time for its association 
with guttate psoriasis, and only more recently, it has been 
associated also with the exacerbation of plaque psoriasis 
(40, 45, 46). The evidence that the streptococcal-derived 
superantigens can activate a subset of T cells in a peptide-
antigen-independent manner could provide an explana-
tion of this phenomenon. Importantly, in pathological 
conditions, keratinocytes express HLA-DR molecules 
and can present streptococcus-derived superantigens to 
T cells [57–59]. Noticeably, M protein of Streptococ-
cus pyogenes, which colonizes psoriatic lesions, shows 
molecular mimicry with keratin 17 [60–62] and has been 
suggested to have a role in the activation of T cells cross-
reacting with keratin-derived self-antigens as discussed 
in paragraph 5.
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THE GUT‑SKIN AXIS IN PSORIATIC DISEASE

Besides the evidence of the direct effect of skin 
microbiome on skin diseases, the intestinal microbiota 
also communicates with the skin providing evidence of 
a gut-skin axis [63].

Human intestinal microbiota comprises bacteria 
mainly belonging to six phyla: Bacteroides, Actinobacte-
ria, Fusobacteria, Firmicutes, Verrucomicrobia, and Pro-
teobacteria, fungi, viruses, protozoa, and archaea [64]. In 
psoriasis patients, the intestinal microbiome has however a 
modified pattern that is characteristic of impaired intestinal 
barrier function and shares features with other intestinal 
inflammatory pathologies, including inflammatory bowel 
disease. This includes increased abundance of Actinobac-
teria and Firmicutes and increased Firmicutes-to-Bacteroi-
detes ratio (F/B ratio). Moreover, there is evidence indicat-
ing that the exacerbation of psoriasis is strongly associated 
with increased abundance of Staphylococcus aureus, Can-
dida albicans, and Malassezia [55, 65] (Fig. 1).

A recent study in the keratinocyte-specific cas-
pase-1 transgenic (Kcasp1.Tg) mouse model of skin 
inflammation [66] showed that the fecal microbiome was 
characterized by abundance of Staphylococcus aureus and 
Streptococcus danieliae. Accordingly, when wild-type 
mice treated with antibiotics were administered orally 
with Staphylococcus aureus and Streptococcus danieliae 
before the induction of psoriasis-like inflammation with 
imiquimod, there was an increase in the severity of skin 
inflammation. This evidence definitively points towards 
the existence of a bidirectional axis in which skin inflam-
mation can modify the gut microbiome and modifying the 
gut microbiome can favor skin inflammation.

A study in patients with psoriasis has reported an 
impairment in the intestinal barrier [67]. The assessment 
was based on the quantification of the plasma level of 
intestinal fatty acid-binding protein (FABP) and claudin-3 
component of the tight junction that was used as an indi-
cator of damage to the enterocytes. In these patients, the 
increase of the markers of impaired barrier function was 

Fig. 1  Skin and gut dysbiosis in psoriasis and associated comorbidities. Original figure created by Biore nder. com.
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associated with a higher disease activity and increased 
blood biomarkers of systemic inflammation including 
C-reactive protein and neutrophil-to-lymphocyte ratio. 
The marker of bacterial translocation trimethylamine 
N-oxide (TMAO), which is a gut microbiota-associated 
metabolite, was markedly increased in the plasma of 
psoriasis patients with altered gut integrity [67]. From 
this evidence, it emerges that, in patients with psoriatic 
disease, intestinal dysbiosis is associated with an intesti-
nal barrier impairment and translocation of bacteria that 
therefore acquire access to the immune cell compartment. 
The phenomenon is called “leaky gut” and has been asso-
ciated with several extraintestinal autoimmune diseases.

Differences in microbiota composition compared to 
healthy subjects have been shown by sequencing-based 
approaches in autoimmune diseases including rheumatoid 
arthritis, multiple sclerosis, type 1 diabetes, and systemic 
lupus erythematosus [68].

As regards rheumatoid arthritis (RA), a higher fecal 
level of Clostridium perfringens in patients was reported 
already in the’60, and recently, next-generation sequenc-
ing studies highlighted increased fecal levels of Prevo-
tella copri, in RA patients [69, 70].

IMPORTANCE OF CROSS‑REACTIVITY 
IN THE PREDISPOSITION 
TOWARDS PSORIASIS AND OTHER 
AUTOIMMUNE PATHOLOGIES

Among the mechanisms that could underlie the 
development of autoimmune diseases, there is molecular 
mimicry, based on structural similarities between pro-
teins derived from infectious agents or commensal bac-
teria and proteins from the host. This phenomenon could 
cause the activation of T and B cells cross-reacting with 
self-proteins. It is increasingly evident that commensals 
and pathogen-derived antigens can induce cross-reactive 
T cells. For instance, in a subgroup of patients with rheu-
matoid arthritis, the HLA-DR-presented peptide from a 
27-kd protein (Pc-p27) derived from Prevotella copri was 
shown to activate T cells and B cells. Two other autoan-
tigens were identified in rheumatoid arthritis that have 
T cell epitopes similar to peptide antigens derived from 
Prevotella and Parabacteroides.

In the context of psoriasis, it is of note that the 
 CD8+ T cells specific for streptococcal M protein cross-
recognizing a keratin 17-derived self-peptide have been 
identified in the circulation of psoriasis patients pointing 

towards a role for cross-reactive bacterial antigens in the 
disease pathogenesis. To this end, it has recently been 
reported that  CD8+ T cells with a skin-primed pheno-
type are clonally expanded in the circulation of both a 
mouse model of autoimmune psoriasis and in patients 
with psoriatic arthritis [71]. Together, this evidence 
underlines the importance of preventing the generation 
of T cell responses to commensals that could cross-react 
with self-antigens and favor the spreading of inflamma-
tory responses at distant organs.

THE INTESTINAL AND SKIN DYSBIOSIS 
IN PSORIASIS AND ASSOCIATED 
COMORBIDITIES

Intestinal dysbiosis could have a major impact on the 
development of comorbidities associated with psoriasis.

High Firmicutes/Bacteroides (F/B) ratio has been 
found in psoriasis and in other diseases associated with 
systemic inflammation [64, 72, 73]. In healthy subjects, 
it has been observed that Firmicutes/Bacteroides ratio 
in the gut was correlated with augmented plasma level 
of trimethylamine-N-oxide (TMAO), a metabolite with 
a proatherogenic potential produced by bacteria [74]. 
TMAO influences the metabolism of cholesterol and acti-
vates macrophages and is therefore linked to an increased 
risk of cardiovascular events [75] (Fig. 2). Clinical trials 
and observational studies have reported gut dysbiosis in 
psoriatic patients characterized by decreased abundance 
of Akkermansia muciniphila and increased C. citroniae 
[55]. In another study, higher diversity of intestinal 
microbiota was reported in patients with psoriasis com-
pared with healthy subjects [76]. Psoriatic microbiome 
in this case showed an increased abundance of Faecali-
bacterium, Akkermansia, and Ruminococcus, while levels 
of Bacteroides were found to be decreased. Conversely, 
in another study, a decrease in bacterial diversity and 
Akkermansia and Ruminococcus levels were observed in 
psoriatic patients [77, 78]. These differences might have 
arisen due to variation in the study design.

PROBIOTICS IN PSORIASIS

According to the definition of Joint FAO/WHO 
Expert Committee on Food Additives of 2002, probiot-
ics are microorganisms that administered in adequate 
amounts provide health benefits to the host [79]. They 
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can exert their activity through different mechanisms: (i) 
they can prevent gut colonization by harmful bacteria; (ii) 
they stimulate the function of the mucosal barrier; (iii) 
they regulate immune cell function, in particular Tregs 
to prevent excessive response inflammatory signals and 
commensals; and (iv) they can release metabolites with 
anti-inflammatory activity.

Among probiotics, the lactic acid bacteria (LAB) 
family, mainly found in dairy food, substantially con-
tributes to maintain the homeostasis of gut microbiota 
through the fermentation of food fibers.

The cross-talk between intestinal microbiota and 
immune cells enables a balanced intestinal homeostasis 
in healthy individuals. However, an alteration due to the 
aged gut or diseases causes changes in gastrointestinal 
microflora equilibrium, resulting in several chronic dis-
eases. The first explanation of the beneficial effects of 
probiotics was provided by the “hygiene hypothesis,” 

suggesting that a lack of exposure to microbial stimuli 
early in childhood was the major factor behind allergic 
reactions. The interaction of probiotics and intestinal 
microflora with the gut-associated lymphoid tissues 
(GALT) indeed favors the induction of oral tolerance and 
mucosal immunity [63, 80].

Interestingly, in the mouse model of imiquimod-
induced psoriasis-like inflammation, early exposure to 
oral antibiotics leads to exacerbation of a more severe 
form of psoriasis in the adult life. This provides a pivotal 
evidence of the role of gut-skin axis and the importance 
of its alteration in predisposing to inflammatory skin dis-
ease [81].

The intestinal microbiota and ingested probiot-
ics can sustain the establishment of immune tolerance 
by activating tolerogenic DCs in the gut that drive Treg 
cell differentiation. This occurred through a decrease of 
the expression of CD80, CD83, and CD86 costimulatory 

Fig. 2  Intestinal dysbiosis and psoriasis and cardiovascular comorbidities: the gut-skin and gut-artery axes. Original figure created by Biore nder. com.
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molecules on DCs and expression of polarizing cytokines 
such as IL-12 together with an increase of indoleamine 
2,3-dioxygenase (IDO) and IL-10. These changes promote 
unresponsiveness of the immune cells to self-antigens  
that is critical for homeostatic maintenance [82].

The mechanisms through which probiotics promote 
immune tolerance and impair unwanted proinflammatory 
responses is largely mediated by the production of SCFAs 
following fermentation of dietary fibers.

SCFAs are saturated fatty acids comprising formate 
(C1), acetate (C2), propionate (C3), butyrate (C4), and 
valerate (C5). The beneficial activity of SCFAs is due 
to the positive effect on regulatory T cell differentiation 
and on the production of IL-10. The activity of these 
molecules is mainly exerted locally; however, it has been 
shown that through the peripheral blood they can exert 
their effect also at the systemic level in tissues other than 
the intestine [83].

As a mechanism of action, the intestinal absorption 
of SCFAs is favored by substrate transporters like MCT1 
and SMCT1 that regulate the intracellular concentration 
of butyrate in colonic epithelial cells. Moreover, SCFAs 
can activate the cell surface G protein-coupled receptor 
(GPCR) signaling cascades thus controlling immune cell 
functions [84]. SCFAs also control energy consumption 
by modulating glucose and lipid metabolism, maintaining 
the integrity of the mucosal barrier [85].

As a mechanism of action for inhibiting pathogenic 
bacteria translocating from the gut, LAB compete with 
enteric pathogenic bacteria for binding to mucin sites on 
the surface of epithelial cells. The effects of lactic acid 
bacteria on the cells of the immune system have sup-
ported their use in several preclinical and clinical studies 
in allergic and autoimmune disorders. Moreover, evi-
dence was provided that heat-killed Lactobacillus sakei 
proBio65 administered orally could inhibit the release of 
histamine and β-hexosaminidase mediated by immuno-
globulin E in NC/Nga mice, supporting a potential inhibi-
tory effect on atopic dermatitis-like skin lesion [86, 87]. 
Lactobacillus casei upon oral administration was reported 
to reduce antigen-specific skin inflammation [88, 89]. 
Rather et al. have described that skin application of Lac-
tobacillus sakei proBio65 reduced psoriasiform inflam-
mation as well as the expression of IL-17, IL-19, and 
IL-23 [90].

Oral administration of Lactobacillus pentosus 
GMNL-77 and Bifidobacterium infantis reduced the 
clinical signs of psoriasiform inflammation in the mouse 
model as well as in humans [76, 91]. Because of the 

increasing amount of evidence in recent years, considera-
ble focus has been directed towards the anti-inflammatory 
properties of probiotics aimed at restoring the functional 
protective ecosystem. In particular, L. rhamnosus and L. 
delbrueckii are known for their induction of tolerogenic 
DCs and their effect on the stimulation of Treg cells 
[92–94] (Table 1).

CROSS‑TALK BETWEEN PROBIOTICS 
AND INTESTINAL MICROBIOTA 
IN REGULATING INTESTINAL EPITHELIUM 
AND SYSTEMIC IMMUNE RESPONSES

Dietary fibers as well as pre- and probiotics are 
available tools to increase peripheral SCFA concentra-
tions (50). Propionate was shown to be beneficial in the 
case of high-fat diet and to reduce the cardiometabolic 
risk in patients with psoriasis [95].

Two clinical studies have been reported so far on 
probiotic administration in patients with plaque psoria-
sis. First, a study conducted on 22 patients with ulcera-
tive colitis, 48 patients with chronic fatigue syndrome, 
22 patients with chronic plaque psoriasis, and 35 healthy 
control individuals showed that administration of  1010 
colony-forming units of viable Bifidobacterium infantis 
per day for 6–8 weeks significantly decreases plasma lev-
els of CRP and TNF-α. Importantly, it was also shown 
that the production of TNF-α and IL-6 by PBMCs from 
healthy individuals upon ex vivo stimulation with LPS 
was lower in group receiving B. infantis 35,624-treated 
groups compared to the group receiving placebo indicat-
ing a modulation of the immune response at the systemic 
level [91].

Secondly, a study in 90 patients who experienced 
the administration for a total 12 weeks of three probiotic 
strains Bifidobacterium longum CECT 7347, B. lactis 
CECT 8145, and Lactobacillus rhamnosus CECT 8361 
with a total of 1 ×  109 CFU daily showed a decrease in 
the PASI score compared to patients receiving placebo. 
Moreover, a follow-up of 6 months evidenced lower risk 
of psoriasis relapse in patients who had received probiot-
ics [96] (Table 1).

As regards atherosclerosis and CVD risk, probiotics 
have been reported to be beneficial in a preventive setting 
by numerous studies [97–101]. Among the mechanisms 
responsible for this phenomenon, the bile salt hydrolases 
produced by the bacteria can increase the conversion of 
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cholesterol to bile acids increasing fecal excretion of bile 
acids thus favoring the decrease of cholesterol level in 
the blood l [102].

In particular, clinical studies evidenced that Lacto-
bacillus probiotics as well as candidate next-generation 
probiotics such as Akkermansia muciniphila and Faecali-
bacterium prausnitzii are efficient in reducing cholesterol 
levels [102].

Obesity is also linked to CVDs, and clinical trials 
have reported that dietary supplementation with both pro-
biotic and prebiotic can counteract this condition [103] 
(Table 1). In the light of this evidence, it is encouraged 
to design specific clinical studies, to support the use of 
probiotics in the prevention and treatment of CVDs.

OTHER APPROACHES 
OF MICROBIOTA‑TARGETED THERAPY 
FOR PREVENTION AND TREATMENT 
OF PSORIATIC DISEASE

The modulation of gut microbiota through the use 
of probiotics, antibiotics, and fecal microbiota transplan-
tation (FMT) has been employed, with the aim to reverse 
the established microbial dysbiosis [80] thus treating or 
preventing various diseases associated with gut dysbiosis.

Fecal microbial transplantation for instance has been 
investigated as a therapeutic tool in a patient with severe 
plaque psoriasis and inflammatory bowel disease, who 
underwent fecal microbiota transplantation twice with an 
interval of 5 weeks through both upper endoscopy and 
colonoscopy. In this case, the clinical signs of both pso-
riasis and inflammatory bowel disease improved, and no 
considerable adverse effects of intervention were reported 
[104]. In another study, fecal microbiota from psoriatic 
patients and healthy individuals were transplanted in 
mice with psoriasis-like inflammation to compare dis-
ease recovery and cytokines levels. Mice transplanted with 
microbiota from psoriatic patients showed delayed recov-
ery of psoriasis-like inflammation and delayed decrease of 
IL-17A than mice receiving fecal microbiota from healthy 
subjects or untreated control mice [105].

Recently, an attempt has also been made aimed at 
correcting the gut microbiome with the purpose to affect 
the development and severity of psoriatic arthritis in pso-
riasis patients by FMT in a cohort of 31 patients. The 
attempt however failed, and the 15 patients undergoing 
FMT did not show a better outcome than sham [106] 
(Table 1).Ta
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Modulation of skin and gut microbiota in psoriatic disease

NEXT‑GENERATION PROBIOTICS 
AS PUTATIVE PREVENTION AND TREATMENT 
TOOLS FOR PSORIASIS AND ASSOCIATED 
CARDIOVASCULAR COMORBIDITIES

Next-generation sequencing (NGS) has enabled a 
rapid expansion in the range of microorganisms known 
to have potential benefits for host health. The new micro-
organisms identified by NGS technology are now called 
next-generation probiotics (NGPs) as well as live bio-
therapeutic products (LBPs) [107]. NGPs are defined as 
“live commensal microorganisms, identified upon com-
parative microbiota analyses, that when administered in 
adequate amounts, confer a host health benefit.” This 
category includes bacteria of the genera Akkermansia, 
Bacteroides, and Faecalibacterium.

According to the guidelines from the Food and 
Drug Administration, NGPs are “active biological 
agents” (i) containing live organisms, such as bacteria; 
(ii) are applicable for prevention, treatment, or cure of 
a disease or condition in human beings; and (iii) are not 
a vaccine. Before entering the market, these NGPs need 
to be assessed in clinical trials (from phases I to IV) and 
require approval by the regulatory authorities.

This new type of studies necessary for NGP 
approval should publish the genomic sequence and evalu-
ate the properties, the profile of antibiotic resistance, and 
the safety and toxicological profile to fulfill the novel 
food regulations. Functions of individual strains may be 
different for specific diseases.

Based on the literature in the field, it is possible to 
envisage that targeted designed probiotic formulation can 
be used to specifically interfere with the progression of 
the psoriatic disease, with the associated psoriatic arthri-
tis, chronic inflammation, and cardiovascular disease.

In people with CVDs, lower levels of bacteria pro-
ducing butyrate and Roseburia have been reported, and in 
a mouse model, feeding with Roseburia together with a 
high-fiber diet reduced atherosclerosis development [108].

A study in a human cohort showed that the intake 
of alcohol was associated with lower abundance of 
Roseburia, and in a mouse model of alcohol-related 
liver disease, it was shown that oral administration of 
Roseburia intestinalis could restore the integrity of the 
intestinal barrier. Nevertheless, it has also been reported 
that Roseburia intestinalis can exacerbate antiphospho-
lipid syndrome in genetically individuals and suscep-
tible mice through a mechanism that involves T and B 
cell epitope sharing [109].

Therefore, to establish the precise effect of NGPs 
on the heath of the patients, complex screening pro-
cesses and experiments to clarify the underlying mecha-
nisms will be required. To this end, the US FDA has 
started a program to regulate the use of this promising 
category of probiotics.

Among the major candidates as NGP to be used 
in the combinatorial treatment of psoriasis patients, 
Akkermansia muciniphila should be mentioned, as it 
may represent a key node for psoriasis progression but 
also for inflammatory bowel disease and obesity [110]. 
Evidence has been provided showing that A. mucin-
iphila is negatively correlated with cardiometabolic 
conditions and low-grade inflammation; therefore, con-
ceivably, its administration could positively correlate 
with an improvement of psoriasis course and decreased 
comorbidity development [111]. Preliminary studies in 
humans indicated the safety of A. muciniphila admin-
istered orally; nevertheless, further clinical trials are 
necessary to finally support this evidence.

Faecalibacterium prausnitzii, a member of the Fir-
micutes phylum, can also participate in the maintenance 
of the gut homeostasis by producing butyrate [110].

In patients with psoriasis and psoriatic arthritis, 
Scher et al. and Eppinga et al. reported a decline in F. 
prausnitzii [77, 78, 112]. It is therefore conceivable that 
correcting this decline could be beneficial for patients’ 
conditions.

The main mechanism through which NGPs may 
control the development of cardiovascular illness is the 
production of SCFAs. Among the mechanisms proposed 
to explain this effect is the reduction of cholesterol level 
by (i) decreasing the expression of genes involved in the 
cholesterol synthesis, (ii) increasing the expression of 
cytochrome P450 monooxygenase, which accelerates 
the transformation of cholesterol to bile acids, and (iii) 
activation of G protein-coupled receptor 41 (GPR41) in 
adipocytes to produce leptin, which further suppresses 
the expression of the master regulator of sterol and fatty 
acid synthesis SREBP2.

A deep understating and complete clinical trial 
addressing these points could optimize the use of the NGPs 
in implementing the current therapeutic and preventive 
tools for the treatment of patients with psoriatic disease. 
As a mechanism of action, NGP can alter the ecosystem 
thus correcting dysbiosis and colonization by bacterial 
strains that favors the generation of pathogen-specific T 
cells. These cells through molecular mimicry could give 
rise to cross-reactive T cell responses towards self-antigens 
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that can favor autoimmunity associated with dysbiosis. In 
addition, NGPs can promote a tolerogenic phenotype in 
dendritic cell through the production of SCFAs, decrease 
CD80 CD86 expression, and increase in the generation of 
Tregs. NGPs could also decrease in the inflammasome 
activation and the downstream inflammatory cascade that 
could promote psoriasis exacerbation and increase the bar-
rier integrity and prevention of the leaky gut phenomenon 
that favors systemic inflammation. Finally, they decrease 
TMAO and the related cardiovascular risk.

CHALLENGES FOR THE THERAPEUTIC USE 
OF MICROBIAL MODIFYING THERAPIES 
AND CONCLUSIONS

Because of limitations in the use of probiotics due 
to their decreased viability during the transition to the 
gut and their safety, recently, new formulations have been 
developed with the attempt to overcome these limitations 
and improve the specificity of the intervention. These 
include prebiotics, postbiotics, and symbiotics.

Prebiotics do not contain microorganisms, and 
they are resistant to the actions of stomach acid; there-
fore, they can reach the intestine unaltered and exert 
their activity. To be considered prebiotics, food com-
ponents need to have a known chemical structure, pro-
vide a substrate for beneficial bacteria, and stimulate 
the growth of the desired groups of bacteria [113]. 
Experiments performed in HaCaT human keratinocyte 
cell line treated with sodium butyrate and an inhibitor 
of epidermal growth factor receptor showed enhanced 
keratinocyte differentiation suggesting this combination 
as a potential tool in the treatment of hyperproliferative 
skin diseases including psoriasis [114]. In a psoriasis 
mouse model, cutaneous application of sodium butyrate 
increased IL-10 and FOXP3 expression in T cells and 
reduced inflammation [115]. No clinical studies have 
been completed in psoriasis patients; however, the 
effect of a lactic acid-based skin treatment is undergo-
ing evaluation in an exploratory study on plaque pso-
riasis (NCT05078567) [53].

The term postbiotic refers to substances derived 
from the processing of microorganisms. Postbiotics 
have to be prepared through a precise and reproducible 
technological process of biomass production and inac-
tivation [116]. Postbiotics include bioactive compounds 
generated in matrix during fermentation as well as by 
heat-killed bacterial strains (Akkermansia muciniphila 

ATCC BAA-835) [116, 117]. Among postbiotics, we 
have recently reported that a fermentation product of 
Vaccinium floribundum berries with Lactiplantibacillus 
plantarum has an antioxidant effect on human endothelial 
cells (HUVECs) and immunomodulatory properties in a 
macrophage cell line [118].

Probiotics can also be combined with prebiotic and 
these combinations are called symbiotics [119]. In their 
mechanism of action, probiotics, prebiotics, and symbiotics 
can decrease the level of cholesterol by increasing the syn-
thesis of bile salts and bile acid deconjugation thus having 
the potential to provide protection from CVD development.
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