
processes

Article

Evaluation for the Removal Efficiency of VOCs and
Heavy Metals by Zeolites-Based Materials in the
Wastewater: A Case Study in the Tito Scalo
Industrial Area

Maura Mancinelli 1 , Antonella Arfè 1, Annalisa Martucci 1,* , Luisa Pasti 2, Tatiana Chenet 2 ,
Elena Sarti 2, Giulia Vergine 2 and Claudia Belviso 3,*

1 Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy;
maura.mancinelli@unife.it (M.M.); anto.arfe.03@gmail.com (A.A.)

2 Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46,
44121 Ferrara, Italy; luisa.pasti@unife.it (L.P.); tatiana.chenet@unife.it (T.C.); elena.sarti@unife.it (E.S.);
giulia.vergine@unife.it (G.V.)

3 National Research Council, Institute of Methodologies for Environmental Analysis—CNR, Contrada S.
Loja—Zona Industriale C.P. 27, 85050 Tito Scalo, Italy

* Correspondence: mrs@unife.it (A.M.); claudia.belviso@imaa.cnr.it (C.B.); Tel.: +39-0532-974730 (A.M.);
+39-0971-427224 (C.B.)

Received: 20 October 2020; Accepted: 20 November 2020; Published: 22 November 2020 ����������
�������

Abstract: The current study was designed to demonstrate the efficiency of selected zeolites in the
immobilization of heavy metals and volatile organic compounds from water in the industrial area of
Tito Scalo (Basilicata Region in Southern Italy). The efficiency of zeolite materials has been evaluated
by analyzing real water samples, by a multi-technique approach. Gas chromatography (GC) and
inductively coupled plasma optical emission spectrometry (ICP-OES) were selected for the detection
of volatile organic compounds (VOCs) and heavy metals respectively, and then by thermal analysis
(TG, DTA) and X-ray powder diffraction (XRD) to verify the presence of contaminants in the structural
channels of the adsorbents. ZSM-5 zeolite (MFI topology) was suitable for volatile organic compounds,
showing removal efficiencies >87%. 13X (FAU topology) was more selective for in situ abatements
of heavy metals, with efficiencies up to 100%. After VOCs and heavy metals removal, structure
refinements of loaded zeolites highlighted variations of both lattice parameters and extraframework
content confirming the pollutants immobilization in the framework microporosities. The occurrence
of these species was also confirmed by DTA curves showing different phenomena explained on the
basis of the nature and number of extraframework species hosted in the zeolite micropores.

Keywords: Tito Scalo; groundwater contamination; ZSM-5 and 13X zeolites; heavy metals; VOCs

1. Introduction

Contamination of surface and groundwater is considered a global emergency due to the very
fast development of industries, the badly conceived urbanization, as well as the agricultural practices.
Being frequently a recipient for these contaminants, the aquatic ecosystem is seriously deteriorated
and sometimes hopelessly compromised by the occurrence of natural and human-induced chemicals.
A wide range of hazardous pollutants is released from nonpoint broadly distributed sources, including
bioaccumulative and toxic chemicals (i.e., heavy metals such as lead, mercury, and chromium)
and persistent and mobile organic compounds (PMOCs) (i.e., volatile organic compounds (VOCs),
methyl-tertbutylether (MTBE), short-chain perfluoroalkyl acids (PFAAs), and tris(2-chloroethyl)
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phosphate (TCEP)) [1–4]. Their presence at trace and ultra-trace levels might cause the development
of sub-lethal toxic effects in water and groundwater systems [5] due to the difficulty associated with
pollutants removal from water systems, the variety of source sizes and shapes, the pollutants fast
mobility, water solubility, and sorption tendency. Spatial and temporal variations in water chemistry
are mandatory to protect and enhance the status of aquatic ecosystems, as well as to bring applicable
solutions to the subject.

In the present work, we undertook a study of the industrial area of Tito Scalo which is designated
as “Siti di Interesse Nazionale (SIN)” (contaminated Sites of National Interest) and, according to Italian
law, its management is entrusted to the national authorities [6]. This contaminated site is characterized
by the presence of groundwater containing chlorinated solvents (trichlorethylene, 1,2-dichloroethylene,
1,1-dichloroethylene, and vinyl chloride), metals (As, Fe, and Mn), and sulfates in concentrations
above the reference threshold (CSC). In order to control both heavy metals and VOCs in this site,
we have selected zeolites with different silicon vs. aluminum molar ratio (SAR) as a function of
pollutants composition and nature. Zeolites represent a benchmark in the area of porous materials,
due to their efficiency as ion exchanger (i.e., heavy-ion removal) and organic adsorbent media.
The three-dimensional networks containing well-defined channels and cavities imparts high porosity
and a large surface area to these materials whose selectivity and activity towards guest pollutant
species can be modulated by acting on their structure and chemical features. Additionally, rapid
sorption kinetics, no salt and humic substances interference, high stability in water during prolonged
periods of time and against aggressive chemicals make them a viable alternative to other reactive media.
The ability of zeolites with a low Si/Al ratio to remove heavy metal ions, such as Cd2+, Pb2+, Ni2+,
Cu2+, and Zn2+ by ionic exchange has been largely demonstrated to produce drinking water [7–11].
Besides, zeolites characterized by SAR values higher than 5 mol/mol are more hydrophobic materials
which are widely used in adsorption-related applications [12–16].

This study, investigated at pilot scale and under real environmental conditions, provides a rapid
and low-cost solution for the decontamination of the Tito Scalo polluted streams by the identification
of efficient selective adsorbent media able to immobilize the contaminating species. In particular,
ZSM-5 zeolite (MFI topology) turned out to be suitable for chlorinated solvent molecules, while 13X
(FAU topology) was more selective for in situ abatements of heavy metals. The efficiency of zeolite
materials has been evaluated during the water treatment by analyzing real water samples, by gas
chromatography (GC) and inductively coupled plasma optical emission spectrometry (ICP-OES) for
VOCs and heavy metals respectively, and then verifying the presence of contaminants in the structural
channels of the adsorbents by thermal analysis (TG, DTA) and X-ray powder diffraction (XRD).

2. Materials and Methods

2.1. Sampling

The SIN is located about 4 km from the village of Tito (Basilicata, Italy) (Figure 1) within an area
characterized by intense industrial activities. The samples of polluted groundwater were collected in
piezometric wells located in three different areas inside the SIN (Figure 1). Before the sampling activity,
each piezometric well was purged. The low-flow sampling of groundwater was carried out in dynamic
mode by means of an electro-submersible pump. The samples were collected using 1 L glass bottles
with pressure caps ensuring that there was no gap between the sample and the cap. The samples
were fixed using hydrochloric acid and stored in a refrigerator at 4 ◦C until the analysis. 50 mL of
groundwater was collected in plastic bottles for metals determination. The samples were analyzed
within ten days after collection. References about thermodynamic studies pertaining to selected VOCs
(e.g., t-amyl methyl ether, ethyl t-butyl ether, di-isopropyl ether, n-hexane, fluorobenzene) are available
in the literature [17–27].
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Figure 1. View of the study area with the sampling points and geographic coordinates.

2.2. Materials 

High-silica ZSM-5 (280 SiO2/Al2O3 molar ratio, 0.05 wt % Na2O and 0.1 wt % NH4 content) and
13X (1.27 SiO2/Al2O3 molar ratio, 16.28 wt % Na2O) zeolites were supplied as powders in their as-
synthetized form by Zeolyst International (Conshohocken, PA, USA) and Honeywell UOP (Des 
Plaines, IL, USA) respectively. More details about the selected adsorbent media are reported in Table 
1 and [28,29].

Table 1. Structural and physico-chemical characteristics of zeolites under investigation.

Selected Zeolites Framework Topology

2.3. Adsorption Experiments

The adsorption of the contaminants was investigated using the batch method. Adsorption 
experiments were carried out in 20 mL crimp top reaction glass flasks sealed with PTFE septa 
(Supelco, PA, USA). In the case of VOCs adsorption experiments, the flasks were filled in order to 
have the minimum headspace. For VOCs, a solid/solution ratio of 4:1 (mg mL−1) was employed, 
whereas for heavy metals the solid/solution ratio was 1:1 (mg mL−1). After 24 h equilibration at a 
temperature of 25.2 ± 0.5 °C under stirring, the zeolites were separated from the solution by filtration 
using 25 mm syringe filters with PVDF membrane 0.45 μm (Agilent Technologies, Santa Clara, CA, 
USA). The initial concentrations (C0) and the concentrations at equilibrium (Ce) of the contaminants
in the water samples were determined (by ICP-OES for metals and HS-GC-MS for VOCs) and the 
adsorbed quantities were calculated with the following equation: 

𝒒 =  𝑪𝟎 − 𝑪𝒆 ∙ 𝑽𝒎
where q (mg g−1) is the contaminant uptake (mg g−1), C0 is the initial contaminant concentration in the 
solution (mg L−1), Ce the contaminant concentration in the solution at equilibrium (mg L−1), V is the 
solution volume (L) and m is the mass of adsorbent (g). In the present work, the adsorption isotherm 
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2.2. Materials

High-silica ZSM-5 (280 SiO2/Al2O3 molar ratio, 0.05 wt % Na2O and 0.1 wt % NH4 content)
and 13X (1.27 SiO2/Al2O3 molar ratio, 16.28 wt % Na2O) zeolites were supplied as powders in their
as-synthetized form by Zeolyst International (Conshohocken, PA, USA) and Honeywell UOP (Des
Plaines, IL, USA) respectively. More details about the selected adsorbent media are reported in Table 1
and [28,29].

Table 1. Structural and physico-chemical characteristics of zeolites under investigation.

Selected Zeolites Framework Topology

13X: Na 90.04 [Al 92.64 Si 99.78 O 384] • 200.03 H2O
Cation type: Na
Si/Al (mol/mol): 1.08
Channel dimensionality: Topological (pore opening >
6-ring): 3-dimensional
SSABET (m2 g−1): 791; SSAmicrop (m2 g−1): 731;
Vp (cm3 g−1): 0.301; Vmicrop (cm3 g−1): 0.267

[FAU]

ZSM-5: [Si96O192]
Cation type: NH4
Si/Al (mol/mol): >500
Channel dimensionality: Topological (pore opening >
6-ring): 3-dimensional
SSABET (m2 g−1): 550; SSAmicrop (m2 g−1): 355;
Vp (cm3 g−1): 0.52; Vmicrop (cm3 g−1): 0.09

[MFI]
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2. Materials and Methods

2.1. Sampling

The SIN is located about 4 km from the village of Tito (Basilicata, Italy) (Figure 1) within an area 
characterized by intense industrial activities. The samples of polluted groundwater were collected in 
piezometric wells located in three different areas inside the SIN (Figure 1). Before the sampling
activity, each piezometric well was purged. The low-flow sampling of groundwater was carried out 
in dynamic mode by means of an electro-submersible pump. The samples were collected using 1 L 
glass bottles with pressure caps ensuring that there was no gap between the sample and the cap. The 
samples were fixed using hydrochloric acid and stored in a refrigerator at 4 °C until the analysis. 50 mL
of groundwater was collected in plastic bottles for metals determination. The samples were analyzed 
within ten days after collection. References about thermodynamic studies pertaining to selected
VOCs (e.g., t-amyl methyl ether, ethyl t-butyl ether, di-isopropyl ether, n-hexane, fluorobenzene) are 
available in the literature [17–27]. 
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2.3. Adsorption Experiments

The adsorption of the contaminants was investigated using the batch method. Adsorption
experiments were carried out in 20 mL crimp top reaction glass flasks sealed with PTFE septa
(Supelco, PA, USA). In the case of VOCs adsorption experiments, the flasks were filled in order to have
the minimum headspace. For VOCs, a solid/solution ratio of 4:1 (mg mL−1) was employed, whereas
for heavy metals the solid/solution ratio was 1:1 (mg mL−1). After 24 h equilibration at a temperature
of 25.2 ± 0.5 ◦C under stirring, the zeolites were separated from the solution by filtration using 25 mm
syringe filters with PVDF membrane 0.45 µm (Agilent Technologies, Santa Clara, CA, USA). The initial
concentrations (C0) and the concentrations at equilibrium (Ce) of the contaminants in the water samples
were determined (by ICP-OES for metals and HS-GC-MS for VOCs) and the adsorbed quantities were
calculated with the following equation:

q =
(C0 −Ce)·V

m

where q (mg g−1) is the contaminant uptake (mg g−1), C0 is the initial contaminant concentration
in the solution (mg L−1), Ce the contaminant concentration in the solution at equilibrium (mg L−1),
V is the solution volume (L) and m is the mass of adsorbent (g). In the present work, the adsorption
isotherm was not estimated, since the real samples contained a variety of different compounds that
could be characterized by different adsorption properties. In addition, competitive phenomena could
also modify the single-component adsorption. Therefore, to investigate the capability of zeolite in the
removal of a complex mixture of contaminants, we evaluated the adsorbed quantity with respect to the
total VOC concentration (see Section 2.5). For the adsorption of VOCs onto zeolites, different isotherm
models have been employed [30–36].

2.4. Inductively Coupled Plasma Optical Emission Spectrometry

The concentration of As, Fe, and Mn in the water samples, before and after the contact with zeolite
13X, was determined by ICP-OES (Perkin-Elmer Optima 3100 XL, Inc. 940 Winter Street Waltham, MA
02451 USA) (axial view) equipped with a solid-state charge-coupled device detector (CCD), a peristaltic
pump and a low-flow GemCone nebulizer coupled to a cyclonic spray chamber. Analytical lines
188.98 nm, 259.94 nm, and 293.30 nm were selected for the quantitative determination of As, Fe,
and Mn respectively. The ICP-OES measuring parameters were: plasma flow = 15 L min−1, auxiliary
flow = 0.5 L min−1, nebuliser flow = 0.65 L min−1, RF power = 1350 W.

2.5. Gas Chromatography

The concentration of VOCs in the aqueous solution before and after the contact with zeolite ZSM-5
was determined by Headspace Gas Chromatography coupled to Mass Spectrometry (HS-GC-MS).
The analyses were carried out with an Agilent GC-MS system (Santa Clara, CA, USA) consisting
of a GC 6850 Series II Network coupled to a Pal G6500-CTC injector and a Mass Selective Detector
5973 Network.

HS autosampler injector conditions were: incubation oven temperature 85 ◦C, incubation time
50 min, headspace syringe temperature 90 ◦C, agitation speed 250 rpm, agitation on time 30 s, agitation
off time 5 s, injection volume 1 mL, fill speed 30 µL s−1, syringe pull-up delay 5 s, injection speed
250 µL s−1, pre-injection delay 0 s, post-injection delay 2 s, syringe flush 30 s with nitrogen.

The injected solutions consisted of 10 mL of sample solutions containing 1.8 g of NaCl and 10 µL
of 500 mg L−1 of fluorobenzene in methanol as an internal standard. An HP-VOC GC column (L = 30 m,
I.D. = 0.2 mm, df = 1.12 µm film thickness, Agilent, Santa Clara, CA, USA) was used. The carrier gas
was high purity helium with a constant flow rate of 1.0 mL min−1. The oven temperature gradient
started at 35 ◦C for 5 min, then ramped to 70 ◦C at 5 ◦C min−1 with a hold time of 0 min, finally it
ramped 230 ◦C at 20 ◦C min−1 with a hold time of 1 min. All samples were injected in split mode (10:1).
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The mass spectrometer operated in electron impact mode (positive ion, 70 eV). The source temperature
and the quadrupole temperature were set to 230 ◦C and 150 ◦C respectively. The mass spectra were
acquired in full scan mode. The electronic scan speed was 1562 amu s−1 in a mass range from 30 to
300 amu. For identification and quantification of the target analytes, the SIM (selected ion monitoring)
chromatograms were extracted from the acquired signal by selecting the most abundant characteristic
fragments at m/z = 41, 43, 57 (n-hexane and decane), m/z = 41, 42, 43 (2-methylpentane), m/z = 41, 57,
73 (methyl t-butyl ether, MTBE), m/z = 43, 45, 87 (diisopropyl ether, DIPE), m/z = 43, 55, 73 (t-amyl
methyl ether, TAME), m/z = 57, 59, 87 (ethyl t-butyl ether, ETBE), and m/z = 50, 70, 96 (fluorobenzene).
Chromatographic peaks of analytes were identified by comparison of the retention time and the mass
spectrum with standard compounds and library data.

The total VOCs concentration in each sample was determined according to the procedure proposed
by the Italian Institute for Environmental Protection and Research (ISPRA) [37] by considering the
area of the chromatographic peaks in a specific retention window, from 4.6 to 17.2 min which was
the retention times for 2-methylpentane and decane respectively. The sum of the areas of the peaks
within the selected retention window was expressed as a concentration of n-hexane through external
calibration to represent the total VOC concentration. The areas of the peaks of ethers (MTBE, ETBE,
TAME, and DIPE) were subtracted from the total, if present.

2.6. Quality Assurance

The limit of detection (LOD) for the analytes (VOCs, As, Fe and Mn), calculated from the
blank value plus three times the standard deviation of the 10 replicates of blank solutions [38],
were 58.94 µg L−1 for As, 1.36 µg L−1 for Fe, 2.58 µg L−1 for Mn, and 0.17 mg L−1 for VOCs.

The procedural quality control for the analysis of the metals was verified with recovery experiments
by adding a known quantity of a standard solution containing the three metals. The recovery obtained
was 92 ± 11% for As, 98 ± 5% for Fe, and 96 ± 9% for Mn. For VOCs, quality control was carried
out by determining the recovery of fluorobenzene which was added to each sample before analysis;
the recovery obtained was 103 ± 13.6%.

Reagent blanks were analyzed to account for possible contamination during sample preparation;
the reagent blanks were subtracted from the value of the concentration of the target analytes present in
the samples.

2.7. Thermal Analyses

Thermogravimetric (TG) and differential thermal analysis (DTA) measurements of both loaded
and bare zeolite samples were performed in constant air flux conditions using an STA 409 PC
LUXX®—Netzch (Gerätebau, Germany) operating at 10 ◦C/min heating rate, from room temperature
(RT) to 900 ◦C. The tests were conducted using sample amounts of approximately 65 mg.

2.8. X-ray Powder Diffraction Data Collection and Refinement Strategy

X-ray diffraction patterns on powders of ZSM-5 and 13X zeolites before and after contact with
the waters of the reference wells were carried out on a Bruker D8 Advance diffractometer (Cu Kα1,2
radiation) equipped with a Sol-X detector. Diffraction data were collected at RT, in 10–120◦ 2θ ranges,
with a counting time of 20 s each 0.02◦ 2θ. The structural refinements were run through a full profile
Rietveld analysis using the GSAS [39] software and the EXPGUI graphical interface [40]. Unit-cell and
structural parameters were determined starting from the monoclinic P21/n (for ZSM-5) and the cubic
Fd-3m (for 13X) space groups, respectively. The Bragg peak profiles were modeled by a Pseudo-Voigt
function (Thompson-Cox-Hastings) with the peak cut-off set to 0.001% of the peak maximum by means
of three Gaussian terms (i.e., GU, GV, and GW, respectively), and the two Lorentzian broadening
coefficients (i.e., LX, and LY, respectively) plus an asymmetry contribution. The 2θ zero shift, scale
factor, and unit-cell parameters were refined. The instrumental background was empirically fitted
using a Chebyshev polynomial of the first type with 18 (ZSM-5) and 20 (13X) variable coefficients data
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set. Soft restraints were initially imposed on tetrahedral bond distances (1.625 Å, tolerance (σ) value of
0.04 Å) and then completely removed in the final cycles. Finally, atomic coordinates, site occupancy,
and isotropic atomic displacement parameters were refined. Tables 2 and 3 report the details of the
data collections and Rietveld refinements. The crystal size determination was achieved by the integral
breadth based calculation of volume-weighted mean crystallize sizes assuming intermediate crystallite
size broadening modeled by a Voigt function.

Table 2. Details of the data collection and Rietveld refinements of 13X before and after metals adsorption.

13X PM1 PM10 PM17 PM21 PM28 RW8

Space group Fd-3m Fd-3m Fd-3m Fd-3m Fd-3m Fd-3m Fd-3m
a = b = c (Å) 24.9859(3) 24.8980(3) 24.8762(2) 24.9160(3) 24.9067(2) 24.8780(3) 24.8773(3)
α = β = γ (◦) 90 90 90 90 90 90 90

V (Å3) 15,598.70(3) 15,434.52(3) 15,394.00(7) 15,467.9(3) 15,450.68(2) 15,397.39(3) 15,396.00(6)
Wavelength (Å): Cu Kα1 1.540593 1.540593 1.540593 1.540593 1.540593 1.540593 1.540593

Cu Kα2 1.544427 1.544427 1.544427 1.544427 1.544427 1.544427 1.544427
Refined 2θ (◦) range 10–120◦ 10–120◦ 10–120◦ 10–120◦ 10–120◦ 10–120◦ 10–120◦

Table 3. Details of the data collection and Rietveld refinements of ZSM-5 before and after
VOCs adsorption.

ZSM-5 PM1 PM10 PM17 PM21 PM28 RW8

Space group P21/n P21/n P21/n P21/n P21/n P21/n P21/n
a (Å) 19.8999(5) 19.9018(4) 19.8936(4) 19.8879(9) 19.8934(6) 19.8946(5) 19.8968(5)
b (Å) 20.1174(6) 20.1256(4) 20.1166(4) 20.1107(7) 20.1152(4) 20.1176(4) 20.1216(8)
c (Å) 13.3892(4) 13.3877(3) 13.3817(3) 13.3834(4) 13.3834(4) 13.3840(4) 13.3834(8)
α (◦) 90 90 90 90 90 90 90
β (◦) 90.546(3) 90.558(2) 90.567(2) 90.550(4) 90.555(4) 90.557(5) 90.557(5)
γ (◦) 90 90 90 90 90 90 90

V (Å3) 5359.90(3) 5362.00(2) 5355.00(2) 5352.60(4) 5355.23(3) 5356.42(2) 5357.80(1
Wavelength (Å): Cu Kα1 1.540593 1.540593 1.540593 1.540593 1.540593 1.540593 1.540593

Cu Kα2 1.544427 1.544427 1.544427 1.544427 1.544427 1.544427 1.544427
Refined 2θ (◦) range 10◦–120◦ 10◦–120◦ 10◦–120◦ 10◦–120◦ 10◦–120◦ 10◦–120◦ 10◦–120◦

3. Results and Discussion

3.1. Adsorption

The total VOCs concentration in each sample is reported in the second column (C0) of Table 4.
Table 4 also reports the contaminants uptake (q) and removal efficiency obtained by using zeolite
ZSM-5 as adsorbent material. Analogously, Table 4 shows the initial contaminants concentration (C0),
contaminants uptake (q), and removal efficiency obtained from adsorption on zeolite 13X for Fe and
Mn metal ions.

Volatile organic compounds, and among them chlorinated substances, are commonly found in
groundwaters due to their vast use as solvents [41]. VOCs were present in all the samples analyzed in
a concentration range from 0.75 to 163 mg L−1, with an important contribution of 1,2-dichloroethylene
and trichloroethylene which were identified in all the samples. Zeolite ZSM-5 has been selected in this
work due to its high uptake towards VOCs [42–48]; in fact, it showed high removal efficiencies (>87%)
for this class of contaminants present in the groundwater samples from Tito Scalo, with the adsorbed
quantity (q) increasing with the increase of initial contaminant concentration in the water sample.

For concerned metals, As was absent in all the water samples, Mn was detected in all samples
except one (PM28) in a concentration range between 400 and 1750 µg L−1. Fe also was present in all
samples except one (PM1), but in lower concentrations compared to Mn, from about 1.5 to 57 µg L−1.
In groundwaters, under an anaerobic environment. their presence can be caused by reducing conditions
that promote the stability of Fe and Mn as soluble divalent ions [49]. For both metals, zeolite 13X
proved to be an efficient adsorbent, with efficiencies up to 100%. Lower removal efficiencies (53% and
68% for Fe and Mn respectively) were obtained only for those samples showing a higher initial metal
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content, this decrease in the removal efficiency may be due to the saturation of the adsorbent material
towards these metals.

Table 4. Initial contaminants concentration (C0), contaminants uptake (q), and removal efficiency, with
standard deviations for VOCs adsorption on zeolite ZSM-5 and for Fe and Mn on zeolite 13X.

VOCs
Sample C0 (mg L−1) q (mg g−1) Removal Efficiency (%)

PM1 164 ± 12.63 37 ± 1.30 99.65
PM10 2.6 ± 0.26 0.6 ± 0.20 96.89
PM17 20 ± 1.77 4.3 ± 0.51 98.54
PM21 5.5 ± 0.95 1.2 ± 0.45 97.58
PM28 0.75 ± 0.09 0.2 ± 0.11 87.31
RW8 3.4 ± 0.28 0.8 ± 0.21 96.79

Fe
Sample C0 (µg L−1) q (µg g−1) Removal Efficiency (%)

PM1 - - -
PM10 56.8 ± 0.56 29.4 ± 0.47 53.27
PM17 2.8 ± 0.24 2.8 ± 0.35 100
PM21 1.5 ± 0.11 1.5 ± 0.31 100
PM28 4.9 ± 0.18 4.8 ± 0.35 100
RW8 6.6 ± 0.58 6.5 ± 0.38 100

Mn
Sample C0 (µg L−1) q (µg g−1) Removal Efficiency (%)

PM1 962 ± 5.2 694 ± 1.91 73.00
PM10 1104 ± 7.2 1014 ± 3.80 94.35
PM17 578.5 ± 0.90 554 ± 1.26 98.40
PM21 414 ± 1.00 412 ± 1.23 99.83
PM28 - - -
RW8 1745 ± 4.3 1172 ± 3.97 67.99

3.2. Structural and Thermal Characterization

Structural and thermal characterization of the adsorbents at the end of the adsorption test confirmed
the incorporation of heavy metals and VOCS inside the microporosities of selected zeolites. A careful
examination of both positions and intensities of the X-ray diffraction peaks showed strong differences
with respect to those of the as-synthetized materials, especially at low 2θ angles. Figure 2 compares
the XRD patterns of the fresh zeolites with those of the samples after their permanence in polluted
groundwater collected in piezometric wells located in different areas inside the SIN.
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In 13X, the cubic Fd-3m symmetry was maintained but the refined lattice parameters and unit-cell
volume (V) was remarkably decreased (Table 2). A sensible variation of diffraction profile width was
noticed in loaded samples, confirmed by the full width at half maximum (FWHM) values as a function
of 2theta (◦) as reported in Figure 3a.

Processes 2020, 8, x FOR PEER REVIEW 9 of 15 

 

In 13X, the cubic Fd-3m symmetry was maintained but the refined lattice parameters and unit-
cell volume (V) was remarkably decreased (Table 2). A sensible variation of diffraction profile width 
was noticed in loaded samples, confirmed by the full width at half maximum (FWHM)  values as a 
function of 2theta (°) as reported in Figure 3a. 

 
(a) (b) 

Figure 3. FWHM values as a function of 2theta (°) of ZSM-5 (a) and 13X (b). 

The average grain sizes of the 13X samples decreased from 120 Å in the fresh sample to about 
500 Å. No noticeable distortion of the framework was highlighted and the channel’s geometry 
remained about circular as attested by ellipticity, ε (ε = largest/shortest oxygen–oxygen bond 
distances), and the Crystallographic Free Area, CFA (calculated assuming an oxygen ionic radius of 
1.35 Å), parameters, reported in Table 5. 

Table 5. Crystallographic Free Area (CFA) and channel ellipticity (ε ) for ZSM-5 and 13X before and 
after adsorption. 

 13X PM1 PM10 PM17 PM21 PM28 RW8 
CFA (Å2) 43.29 43.23 43.43 43.45 43.76 43.28 47.29 
ε  1.01 1.01 1.01 1.01 1.01 1.00 1.04 
Straight channel (SC) [010] Ring A ZSM-5 PM1 PM10 PM17 PM21 PM28 RW8 
CFA (Å2) 22.69 21.05 23.67 24.31 23.82 23.83 24.03 
ε  1.03 1.08 1.06 1.11 1.05 1.05 1.09 
Straight channel (SC) [010] Ring B ZSM-5 PM1 PM10 PM17 PM21 PM28 RW8 
CFA (Å2) 23.03 22.42 23.08 23.50 23.01 23.01 23.61 
ε  1.02 1.08 1.03 1.10 1.04 1.04 1.06 
Sinusoidal or zigzag channel (ZZ) [100] Ring A ZSM-5 PM1 PM10 PM17 PM21 PM28 RW8 
CFA (Å2) 21.65 21.59 23.54 23.98 23.63 23.63 24.07 
ε  1.05 1.08 1.08 1.12 1.08 1.08 1.06 
Sinusoidal or zigzag channel (ZZ) [100] Ring B ZSM-5 PM1 PM10 PM17 PM21 PM28 RW8 
CFA (Å2) 22.65 21.49 22.70 24.27 22.87 22.87 23.05 
ε  1.06 1.12 1.09 1.10 1.10 1.10 1.11 

After heavy metal-exchange, similar wt. % losses during TG analysis (25–29 wt. %) were 
observed in the 13X sample: ~3 wt.% losses in the 25–100 °C range due to physically adsorbed water, 
22~26 wt.% losses in the 100–900 °C range [8]. These differences can be explained on the basis of the 
nature and number of metal exchangeable cations hosted in the zeolite micropores (being Si/Al ratio 
constant) and, consequently, to the nominal charge (Z) and radius (r) of the charge-compensating 
cations. These two latter factors are normally combined in the ratio Z/r which gives a measure of the 
ionic potential of exchangeable extraframework (EF) cations. 

The DTA curves showed different phenomena occurring with respect to the unloaded samples 
(Figure 4. The broad exothermic and not well-defined signal observed above 200 °C, with a maximum 
at ~500 °C, has been usually related to the loss of the hydroxyl groups that compose the zeolite 
structure. At higher temperature, another exothermic peak was taken as a reference of zeolites 
thermal stability and was attributed to the collapse of the zeolite structure and/or to the 

Figure 3. FWHM values as a function of 2theta (◦) of ZSM-5 (a) and 13X (b).

The average grain sizes of the 13X samples decreased from 120 Å in the fresh sample to about
500 Å. No noticeable distortion of the framework was highlighted and the channel’s geometry remained
about circular as attested by ellipticity, ε (ε = largest/shortest oxygen–oxygen bond distances), and the
Crystallographic Free Area, CFA (calculated assuming an oxygen ionic radius of 1.35 Å), parameters,
reported in Table 5.

Table 5. Crystallographic Free Area (CFA) and channel ellipticity (ε) for ZSM-5 and 13X before and
after adsorption.

13X PM1 PM10 PM17 PM21 PM28 RW8

CFA (Å2) 43.29 43.23 43.43 43.45 43.76 43.28 47.29
ε 1.01 1.01 1.01 1.01 1.01 1.00 1.04
Straight channel (SC) [010] Ring A ZSM-5 PM1 PM10 PM17 PM21 PM28 RW8
CFA (Å2) 22.69 21.05 23.67 24.31 23.82 23.83 24.03
ε 1.03 1.08 1.06 1.11 1.05 1.05 1.09
Straight channel (SC) [010] Ring B ZSM-5 PM1 PM10 PM17 PM21 PM28 RW8
CFA (Å2) 23.03 22.42 23.08 23.50 23.01 23.01 23.61
ε 1.02 1.08 1.03 1.10 1.04 1.04 1.06
Sinusoidal or zigzag channel (ZZ) [100] Ring A ZSM-5 PM1 PM10 PM17 PM21 PM28 RW8
CFA (Å2) 21.65 21.59 23.54 23.98 23.63 23.63 24.07
ε 1.05 1.08 1.08 1.12 1.08 1.08 1.06
Sinusoidal or zigzag channel (ZZ) [100] Ring B ZSM-5 PM1 PM10 PM17 PM21 PM28 RW8
CFA (Å2) 22.65 21.49 22.70 24.27 22.87 22.87 23.05
ε 1.06 1.12 1.09 1.10 1.10 1.10 1.11

After heavy metal-exchange, similar wt% losses during TG analysis (25–29 wt%) were observed
in the 13X sample: ~3 wt% losses in the 25–100 ◦C range due to physically adsorbed water, 22~26 wt%
losses in the 100–900 ◦C range [8]. These differences can be explained on the basis of the nature and
number of metal exchangeable cations hosted in the zeolite micropores (being Si/Al ratio constant) and,
consequently, to the nominal charge (Z) and radius (r) of the charge-compensating cations. These two
latter factors are normally combined in the ratio Z/r which gives a measure of the ionic potential of
exchangeable extraframework (EF) cations.

The DTA curves showed different phenomena occurring with respect to the unloaded samples
(Figure 4). The broad exothermic and not well-defined signal observed above 200 ◦C, with a maximum
at ~500 ◦C, has been usually related to the loss of the hydroxyl groups that compose the zeolite
structure. At higher temperature, another exothermic peak was taken as a reference of zeolites thermal
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stability and was attributed to the collapse of the zeolite structure and/or to the recrystallization into a
new phase [50–53]. These results suggested that the 13X thermal stability increases with increasing
ionic radii of the ions in the channel-void system and, consequently, the framework distortion by
electrostatic interactions, decreases with the increase in ionic radius.
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For ZSM-5 samples after VOCs adsorption, a comparison of the XRD patterns before and after
their permanence in polluted groundwater highlighted relevant changes in the peak intensities in the
low 2θ region but slight modifications of their position. Moreover, the absence of reflection peaks
which are forbidden in the monoclinic P21/n symmetry revealed that this symmetry was maintained.
The unit cell parameters were not remarkably modified (Tables 2 and 3) but a noticeable distortion of
the framework was highlighted (Table 5) by the Rietveld crystal structure refinement, clearly indicating
a remarkable change in the ellipticity and crystallographic free area of both straight and sinusoidal
channels (Table 5). No noticeable variations in the FWHM values as a function of 2θ (◦) were detected
and the average grain sizes were ~100 Å before and after VOCs adsorption.

TG analyses showed a first weight loss associated with the elimination of species (water and/or
VOCs) weakly bonded to the surface (25–100 ◦C, weight loss 2.0%), and a second one (100–900 ◦C,
weight loss ~1 wt%). In all cases, the last weight loss was related in DTA analyses to two exothermic
reactions ascribed to VOCs decomposition (Figure 4). Similar results were already observed in the
same ZSM-5 sample after adsorption of BTEX and/or VOCs from water [42–48].

The occurrence of both structural modifications coupled with information on the phase’s thermal
behavior strongly suggests that both selected zeolites are efficient in the pollutants removal from water.

These results suggested that filters containing the ZSM-5 and 13X, placed in succession, can
constitute an efficient adsorption system suitable for the in situ abatement of contaminants in
groundwater, such as in the Permeable Reactive Barriers system (PRB). This water remediation
technology is often preferred with respect to thermal desorption, groundwater pump-and-treat
systems, biodegradation, chemical oxidation, and reduction because of the significant technical and
economic advantages, as well as low impacts on the environment [54–66]. With respect to other
remediation technologies, the PRB option represents the optimum solution in longevity and cost and
does not suffer from back diffusion and rebound issues [67–70]. It has been reported that the PRB
system could be installed efficiently with about 60% cheaper cost than that of the equivalent Pump and
Treat system [71–75].

On the basis of this pilot-scale test, a multi-layered PRB could be constructed by combining different
reactive materials (13X and ZSM-5). These reactive adsorbent media may successfully remove a wide
variety of contaminants, including heavy metals, chlorinated solvents, and aromatic hydrocarbons.
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4. Conclusions

The current study was designed to test the efficiency of 13X and ZSM-5 adsorbent media in the
heavy metals and volatile organic compounds removal of polluted water in the industrial area of
Tito Scalo (Basilicata Region in Southern Italy). ZSM-5 zeolite was shown to be suitable for volatile
organic compounds (in particular 1,2-dichloroethylene and trichloroethylene), showing high removal
efficiencies (>87%). 13X was more selective for in situ abatements of heavy metals with efficiencies up
to 100%.

The effective incorporation of VOCs and heavy metal species was confirmed by XRD structure
refinements by the Rietveld method (i.e., the variation of both lattice parameters and extraframework
content, channels geometry). After heavy metal-exchange on 13X, DTA curves showed different
phenomena which can be explained on the basis of the nature and number of metal exchangeable
cations hosted in the zeolite micropores (being Si/Al ratio constant) and, consequently, to the nominal
charge (Z) and radius (r) of the charge-compensating cations. The exothermic peak occurring at high
temperature was taken as a reference of zeolites thermal stability and it suggested that the 13X thermal
stability increases with increasing ionic radii of the ions in the channel-void system. Consequently, the
framework distortion by electrostatic interactions decreases with the increase in ionic radius.

For ZSM-5 samples after VOCs adsorption, the VOCs decomposition was attested in DTA analyses
by two exothermic reactions. In this case, the occurrence of both structural modifications coupled
with information on the phase’s thermal behavior strongly suggested that ZSM-5 was efficient in the
pollutants removal from water.

These results suggested that filters containing the ZSM-5 and 13X, placed in succession, can
constitute an efficient adsorption system suitable for the in situ abatement of contaminants in
groundwater, such as in the Permeable Reactive Barriers system (PRB). These reactive adsorbent media
can successfully remove a wide variety of contaminants, including heavy metals, chlorinated solvents,
and aromatic hydrocarbons.
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