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Abstract
Nowadays, deep learning is a key technology for many applications in the industrial area such as anomaly detection. The role
of Machine Learning (ML) in this field relies on the ability of training a network to learn to inspect images to determine the
presence or not of anomalies. Frequently, in Industry 4.0 w.r.t. the anomaly detection task, the images to be analyzed are not
optimal, since they contain edges or areas, that are not of interest which could lead the network astray. Thus, this study aims
at identifying a systematic way to train a neural network to make it able to focus only on the area of interest. The study is
based on the definition of a loss to be applied in the training phase of the network that, using masks, gives higher weight to
the anomalies identified within the area of interest. The idea is to add an Overlap Coefficient to the standard cross-entropy.
In this way, the more the identified anomaly is outside the Area of Interest (AOI) the greater is the loss. We call the resulting
loss Cross-Entropy Overlap Distance (CEOD). The advantage of adding the masks in the training phase is that the network is
forced to learn and recognize defects only in the area circumscribed by the mask. The added benefit is that, during inference,
these masks will no longer be needed. Therefore, there is no difference, in terms of execution times, between a standard
Convolutional Neural Network (CNN) and a network trained with this loss. In some applications, the masks themselves are
determined at run-time through a trained segmentation network, as we have done for instance in the "Machine learning for
visual inspection and quality control" project, funded by the MISE Competence Center Bi-REX.

Keywords Visual explanation · Anomaly detection · Visual inspection · Defect localization

1 Introduction

Nowadays, deep learning enables the automation of many
industrial tasks, reducing dependence on human interven-
tion and improving efficiency. For example, automation of
production lines, data management of industrial sensors,
and predictive maintenance are some of the main applica-
tions. Industry benefits from deep learning for inspection and
quality control. Deep neural networks can detect defects or
anomalies in goods more accurately and quickly than man-
ual inspection. Anomaly detection in industrial image data
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is of utmost importance for many tasks in computer vision
[1]. However, training deep learning models requires large
amounts of high-quality data, and in the field of surface anal-
ysis, very often images acquired in the industrial environment
contain some sections that are not part of the surface to be
inspected [2].

Just think of images of products running on conveyor
rollers or connected to other components not subject to
inspection or simply images of the edge of the product which
inevitably incorporates part of the background. In many
cases, if we know the shape of a product to be inspected,
we can simply use some traditional image processing tech-
niques to remove the useless parts from the images. But, in
other cases, we don’t know the exact shape of our product or
where the background appears in the image.

In order to focus on relevant points of an image, this work
proposes and tests a new approach to identify a systematic
way to train a CNN that focuses only on the area of interest.
Todo that,we identify themost important pixels in the images
for classification according to aCNN.After that, we calculate
howmuch these pixels overlapwith themask that is provided,
for each image, during the training phase. The computed
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overlap value is added to the loss of the network, to force the
network to recognize the most important pixels, only within
the area marked by the masks.

The rest of the paper is organized as follows: Section 3
describes the problem and the scenario where this work is
placed, Section 4 describes the idea behind this work, the
mathematical formulation, and the algorithm for the custom
loss developed in this paper. Section 5 illustrates the exper-
iments and the results obtained on the various datasets. In
Sections 2 and 6 we present related work and conclusions
respectively.

2 Related work

In Machine Learning, anomaly detection has long been an
issue of great interest, especially in Industry 4.0 where iden-
tifying defects is one of the major tasks of computer vision.
Various articles survey anomaly detection in the literature
[3, 4]. The aim of our work focuses primarily on the use of
CNNs for structural defect detection during the monitoring
of manufacturing line.

The vastmajority of theCNN-based approaches have been
used to study anomalies in the whole image area. Weimer
D, et al. in [5] investigate CNNs in order to overcome the
difficulties of manually redefining a specific feature repre-
sentation for each new industrial inspection problem. In [6]
the authors show how CNNwith Triplet Loss [7] can be used
to identify anomalies in the industrial environments.

In the context of anomaly detection in industrial images,
Samet Akcay et al. [8] introduced an approach based on
Generative Adversarial Network (GAN) [9]. This approach
was designed to address a common challenge in the indus-
try, namely when the sample of positive examples (usually
representing anomalies) is limited, while negative exam-
ples (normal images) are in large numbers. The GAN learns
the distribution of the class of interest and uses the differ-
ence between a reconstructed image and an input image to
detect anomalies. This methodology has proven effective
for anomaly detection, even in scenarios where the num-
ber of positive examples is low. An and Cho in their study
[10] use a Variational Autoencoder (VAE) [11] for anomaly
detection. However, it is important to note that GAN or Vari-
ational Autoencoders (VAE)-based approaches tend to be
more effective in reconstructing simple anomalies. Theymay
encounter difficulties when dealing with images that contain
noise, such as background, commonly found in industrial
environments. This is a point of challenge that needs further
consideration.

Ferrari et al. [12] illustrate an architecture consisting of a
GAN to perform the reconstruction and denoising processes

and a model for image segmentation capable of detecting
defects. The discriminative network is trained using an AOI
for each image in the training dataset. The network learns
in which area the defects are relevant. In this way, the use
of pre-processing algorithms is reduced. Finally, the model
was tested onMVTec’s anomaly detection dataset and a large
industrial dataset.

In [13] Yong Moon et al. show the importance of using
ClassActivationMaps (CAMs) to check if the neural network
focuses on the area of interest. The authors analyze the CNN
architecture in detail using CAM images along with several
evaluationmetrics to optimize theCNN.Recently, path imag-
ing has been shown to be effective in the segmentation and
recognition of anomalies [14, 15]. In [16], the authors intro-
duce the use of Grad-CAM to construct a self-supervised
method to remove image noise for robust anomaly detection.
Venkataramanan et al. [17] use the activation map to guide
autoencoder training by reducing network attention in abnor-
mal areas and increasing attention in normal areas in order to
strengthen anomaly detection. Song et al. [18] proposed an
interestingmethodology based on anAnomaly Segmentation
Network (AnoSeg). This network was developed to generate
an anomaly map, thus allowing anomalous regions in the
image to be effectively segmented. The AnoSeg approach
represents a significant contribution as it addresses the chal-
lenge of not only detecting anomalies but also segmenting
them precisely. This is particularly useful in industrial con-
texts where it is important to identify not only the presence of
anomalies but also their spatial extent. However, it should be
noted that AnoSeg, like other neural network-basedmethods,
can also be affected by the presence of noise or background
in the image, which can pose a significant challenge in the
industrial environment.

In our approach, we use Grad-CAM [19] to add a penalty
when the neural network detects an anomaly outside theAOI.
Our methodology differs from the previously mentioned
methods because the neural network focuses on distinguish-
ing imperfections in a specific area of the image and not on
the entire image. This allows the CNN to learn to distinguish
anomalies in the area of interest from noise generated by
a heterogeneous background, thus addressing some of the
challenges associated with anomaly detection in industrial
images.

These detection systems can also be applied in contexts
other than anomaly detection, e.g. in the field ofmarine detec-
tion, several algorithms have been developed that can detect
objects by removing noise, through attention-based spatial
pyramid pooling networks and bidirectional feature fusion
strategy [20, 21]. In [22], the authors use aMulti-Path DCNN
Model, dividing the image into three areas of interest by care-
fully examining each part.
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3 Problem description

Asmentioned before, the problem is due to the heterogeneity
that can occur in the images to be analyzed in an industrial
environment. In some cases, it is not possible to perfectly iso-
late the piece of the surface to be analyzed due to the shape
of the object or the environment in which the image of the
object is acquired. These problems can bring a lot of useless
information into the dataset which should still be processed
by vision systems (neural networks in this case). Figure 1, on
the left, shows a representation of the surface with intrinsic
features like a tapped hole for a screw, which could be recog-
nized as a defect since this feature is not present in all images
and not always in the same location. On the right, there is a
representation of a curved surface that, due to the curvature
itself, can present dark areas that could have light refractions
and might lead a neural network to mistake them for defects
[23]. This useless information could alter the result of the
network making it inefficient or unusable. Figure 2 shows an
example that well describes the problem.

To solve this problem, we need to focalize the vision sys-
tem on a specificArea of Interest (AOI)making sure toweigh
more the contribution of the information contained in this
area than in the rest of the image.

This problem is like the task of instance/image segmenta-
tion but, unfortunately, in the industrial environment and the
anomaly detection field, we don’t know a priori the defect.
Thus, we can’t generate the masks that highlight the impor-
tant parts of the images and use these as labels to train a
segmentation network. For this reason, we focus on standard
Convolutional Neural Networks (CNNs) for performing a
binary classification to classify the images with anomalies.

Fig. 2 Example of the image taken from the MVTec AD dataset [24,
25] with two defects: one inside (red circle) and one outside (green
circle) of the area of interest respectively. The damage outside of the
area of interest, for classification purposes, must be considered not a
defect

4 Cross-entropy overlap distance

The idea is to obtain a value that expresses how much two
areaswithin an imageoverlap.As anoverlapvalue,weuse the

Fig. 1 Visual examples of
possible problems encountered
during surface analysis

Intrinsic feature
of the product

Area of
Interest

Camera visual
field

Area of
Interest

Dark areas
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Fig. 3 Extraction of the hottest pixels

Overlap coefficient (also known as the Szymkiewicz - Simp-
son coefficient) [26]. The objects for which we are going to
calculate the overlap will be the mask provided during train-
ing (present in the dataset) and the region of the image that
CNN believes is most significant for the recognition of that
image. To do this, we exploit an explanation algorithm called
Gradient-weighted Class Activation Mapping (Grad-CAM)
[19]. It allows us to identify which area of the image is most
involved in the network decision. Then, at the end of each
forward pass of the network’s training phase, we calculate
an heatmap that highlights the most important pixels in the
input image (the hottest pixels) with Grad-CAM. After that,
we extract the hottest pixels (see Fig. 3) and we calculate
how much these hottest pixels are overlapped with the mask.
The greater the overlap, the lower the penalty applied to the
loss. This will allow the network to learn which area of the
image to focus on, so masks will no longer be needed in
the inference phase. Figure 4 shows the training phase with
CEOD.

4.1 Visual explanation by Grad-CAM

Grad-CAM [19] is a localization technique based on the
Class Activation Mapping (CAM) algorithm [27] that gen-
erates visual explanations for any CNN without requir-
ing changes or re-training. In order to generate a class-
discriminative heatmap, Grad-CAM computes the gradient
of the output score for class cls, the output (outcls) calcu-
lated before the last (softmax) activation w.r.t. the feature
map activations of the last convolutional layer. The global
average pooling of these gradients is calculated to obtain the
neuron importance weights αcls :

αcls = 1

P

∑

i

∑

j

∂outcls
∂A

(1)

where the
∑

i
∑

j represent the global-average pooling and
P represents the number of pixels in the feature map. Finally,

Fig. 4 Cross-Entropy Overlap Distance training phase
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a weighted combination of activation maps is performed,
followed by a ReLU to obtain the heatmap:

LHeatMap
cls = ReLU

(
∑

k

αcls A

)
(2)

For more details, see the work of R.R. Selvaraju et al. [19].

4.2 Mathematical formulation

Overlap Coefficient equation is:

overlapc(Ad , Agt ) = |Ad ∩ Agt |
min(|Ad |, |Agt |) (3)

where Ad and Agt are the areas obtained throughGrad-CAM
and the segmentation mask (or area of the ground truth)
respectively. Agt is obtained with a manual segmentation
or using a previously trained segmentation neural network
[28–30]. Figure 5 shows a graphical representation of Ad

and Agt . In this case, if Ad is a subset of Agt or the converse,
the Overlap Coefficient is 1. If we want to add this term to

the loss function of the neural network, we need to negate the
Overlap Coefficient. Applying the negation of the logarithm
we obtain a new value that we have called Overlap Distance
(OD), expressed by (4):

OD(Ad , Agt ) = − ln

( |Ad ∩ Agt |
min(|Ad |, |Agt |)

)
(4)

In thisway,when Ad is a subset of Agt , we obtain the− ln(1),
and OD becomes 0, giving no contribution to the loss. The
logarithm was introduced because it offers less penalty for
small differences between predicted and corrected values.
When the difference is large, the penalty will be higher. To
optimize our CNN also w.r.t. this further aspect, we need to
add this new term to theCross-Entropy loss [31], as described
by the following equation:

ce = − 1

N

N∑

i=1

yi log(p(yi )) (5)

where N is the number of examples, yi and p(yi ) are the label
and the output of the network for the i -th example respec-

Fig. 5 Stylized sample image
with Ad and Agt as area of the
network detection and mask
respectively

Mask (Agt)

Detection (Ad)

Image
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Fig. 6 2D and 3D heatmap (top
left and bottom left) obtained
with Grad-CAM from an image
(top right and bottom right)

tively. This is necessary to take into account the contribution
of the classification task to the overall loss. We thus obtain
the Cross-Entropy Overlap Distance (CEOD) that is:

CEOD = ce + OD(Ad , Agt ) (6)

CEOD = − 1

N

N∑

i=1

yi log(p(yi ))

+ωyi

(
− ln

( |Ai
d ∩ Ai

gt |
min(|Ai

d |, |Ai
gt |)

))
(7)

The term ω in (7) is a new hyper-parameter to be set which
represents the degree of impact of the new term on the overall
loss. This term depends on the order of magnitude and on the
difference between the two parts of the loss. In our experi-
ments, after different tests, we have set ω to 0.001. The OD
part of the loss is alsomultiplied by yi to take into account the
label of the images. This is because, in the anomaly detection
task, the defect-free images (good images) do not have spe-
cific areas with the hottest pixels but their heat map is rather
uniform and with low-intensity levels.

Figure 6 (bottom left image), by filtering the heatmap for
extracting the hottest pixels, we can obtain the object (or the
area) (then the Ad term) used in (7).

4.3 Algorithm

For exploiting the OD in the training of a CNN, we need
to create a custom training loop for obtaining the fea-
ture extracted in the last convolutional layer, generating the
heatmap, and then using this in CEOD. For obtaining both
the classification output and the features extracted from the
last convolutional layer, the output of the CNNwasmodified.
Algorithm 1 shows the process behind the custom training
loop and the CEOD loss.

As can be seen in line 3 of Algorithm 1, we have applied a

convolutionwith filter
( .5 .5 .5

.5 .5 .5

.5 .5 .5

)
to incorporate a distance con-

cept in the OD computation. The transformation of the mask
after convolution is visible in Fig. 7. Note how, after convo-
lution, there are no more clear differences in height (between
the values 1 and 0, see the bottom right and bottom left 3D
representations in Fig. 7) but the AOI of the mask becomes
more gradual, widening the AOI and allowing us to imple-
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Fig. 7 2D and 3D
representation of the filtered
mask (top left and bottom left)
and the mask inside the dataset
(top right and bottom right)

ment the distance computation so that it can be differentiated
as the rest of the loss.

The distance is important to help the network understand
when the detection is far or near the AOI. Following the
example of Fig. 8, focusing on the original mask (left side of
Fig. 8) we can see that the detection marked with A and B
have two different distances (Da and Db) and the distance of
B (Db) from the AOI is larger than Da. If we use the original
mask in theCEOD, these two detections give the same results
because both A and B are multiplied by the same mask value
which is zero. Instead, if we exploit the filtered masks, we
can see that A1 is partially over the AOI, so its contribution
to the calculation of the CEOD will be greater than B1. The

Algorithm 1 CEOD loss calculation and custom training
loop.
Input: x, y,mask
1: output, f eature_tensor ← CNN (x, y)
2: heatmap ← GradC AM(output, f eature_tensor)

3: mask f iltered ← mask ∗ kernel
( .5 .5 .5

.5 .5 .5

.5 .5 .5

)

4: OD ← OD(mask f iltered , heatmap)
5: loss ← crossentropy(output, y) + OD
6: Perform backpropagation

closer the detection is to the AOI, the smaller the distance.
Clearly, in case of overlap, the distance will be zero. This
contribution leads the network to understand that the further
the detection is from the AOI, the worse it is.

To make the OD part of the loss differentiable, the formu-
lation of the OD became as follows:

OD = − log

[
clipε

( ∑
Ad A∗

gt

min(
∑

Ad ,
∑

A∗
gt )

)]
(8)

where
∑

is calculated over the pixels of the images, A∗
gt rep-

resent the convoluted mask, and clipε is a function that clips
the value of the Overlap Coefficient in the interval [ε, 1− ε]
to avoid the logarithm returning unacceptable values.

5 Experiments

In this section, we describe the datasets, the general setup,
and the results achieved with the experiments. Each experi-
ment was performed on the Marconi1001 cluster provided

1 Marconi100: https://www.hpc.cineca.it/hardware/marconi100
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Fig. 8 Original mask (left) and
filtered mask (right) with two
different detections: A, B, A1
and B1 respectively. Da, Db,
D1a, and D1b represent the
distance between the detection
and the AOI for the original and
filtered mask respectively

by Cineca 2, in which each node is equipped with 2
IBM POWER9 AC922 CPUs and 4 NVIDIA Volta V100
with 16GB of RAM and connected to other nodes with
NVlink 2.0.We have experimentedwith two different CNNs:
EfficientNet-B0 [32], pre-trained on ImageNet [33], and a
custom CNN composed of 8 convolutional blocks (a convo-
lutional block is composed of a convolutional layer, followed
by a batch normalization layer) with a max-pooling layer
every two blocks. The custom Net has 294994 trainable
parameters, 1.33 GFLOPS, and 10,8 ms to an image in infer-
ence. The custom CNN was trained from scratch. On the
MVTec AD dataset, we have trained both networks with and
without the CEOD contribution. Then, we compared the new
CEOD loss with the standard classification loss in terms of
confusion matrix, accuracy, ROC AUC, and loss.

5.1 Dataset

The experiments were performed on two different datasets.
The first dataset is a sub-dataset of MVTec AD [24, 25],
specifically, only the zipper images. This sub-dataset was
augmented to change its shape and proportions. Figure 9
shows some sample images of this dataset. Each image has
an associated binary mask. This dataset is composed of 216
images without defects and 184 images with defects. Then,
in total, there are 400 images in the dataset. The training
proportion is 70/20/10 for training, validation, and testing.
This dataset was chosen because it is representative of the
problem in question. The images in this dataset have flaws
found on both the zipper and the fabric on the outside of the
zipper. To comply with the problem, we consider only the
images that have defects on the zip. Then, all images with no
flaws on the zipper but surrounding fabric were relabelled as
non-defective.

The second dataset used in these experiments is provided
by an Italian company. Unfortunately, it is not possible to

2 Cineca website: https://www.cineca.it/

give details about this dataset due to an NDA signed with
the company in the project. But this latter dataset is a real
industrial dataset. This dataset is composed of 2818 images
without defects and 2246 images with defects. In total, there
are 5064 images in the dataset. The training configuration
is always 80/20 for training and validation. The test set has
893 images. 467 images without defects and 426 images with
defects. The images represent the surface of a product devel-
oped by this company. This product has a round shape and a
clear reflective smooth surface. For this reason, a light pattern
has been applied to these products using a special illuminator
to bring out the defects that occur on the surface of the prod-
uct. The application of this light pattern, due to the reflective
surface, causes random scattering effects that are visually
comparable to defects. These effects are rarely the same.

In the field of anomaly detection, due to data imbalance,
it is customary to augment data to reduce the gap between
classes. However, this approach can lead to several problems,
such as overfitting, and involves increasingly sophisticated
augmentation strategies; this is a hot topic in the literature
[34–36]. Therefore we chose not to implement data augmen-
tation, and as described in the next section, state-of-the-art
results were obtained

5.2 Results

For each experiment, as mentioned before, EfficientNet-B0
was pre-trained on ImageNet. For our experiments, we have
tested both transfer learning and fine-tuning. The experi-
ments show that fine-tuning gives significantly better results
than transfer learning. This is due to the fact that the network
was trained on ImageNet with a standard loss (categori-
cal cross-entropy). Therefore, re-training only the last dense
layer may not be sufficient to be able to enhance the contribu-
tion of the new loss. For our experiments, we have performed
fine-tuning by unfreezing the last 20 convolutional layers.
Various other network configurations will be explored in our
future work to assess the impact of architecture on perfor-
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Fig. 9 Example of the augmented zip dataset

mance. The custom CNN, instead, was trained from scratch
by adopting the new loss proposed. All experiments were
performed with ω at 0.001, batch size at 32, and adamax
with learning rate at 0.002.

5.2.1 MVTec AD Dataset

Table 1 shows the results of EfficientNet-B0 and the custom
CNN trained on theMVTec AD dataset. Both networks were
trained with standard loss (Categorical Cross-Entropy) and
with our CEOD. As can be seen, in both cases, the appli-
cation of the new OD can bring the networks to achieve
better results in the validation phases. Figure 10 shows the
results of EfficientNet-B0 on the test set. From the confusion
matrices, we can see that, by the application of OD on the
loss (thus using the CEOD loss), the network obtains better
results in terms of defect identification at the expense of a
slight worsening in the identification of non-defective ones.
The network trainedwithCEOD reaches 95.5%accuracy and
0.95AUCROC. Indeed, EfficientNet-B0with classical cross-
entropy reaches 93.3% of accuracy and 0.925 AUCROC.
Figure 11 shows the results of custom CNN on the test set.
The custom CNN trained with CEOD obtains 73.3% accu-
racy and 0.74 AUCROC in the same test set. The custom
CNN trained with standard cross-entropy reaches 48.8% of

accuracy and 0.53 AUCROC. Figure 12 shows an example
of a heatmap produced by a network trained classically and
the one trained with CEOD. The time spent performing 1K
training cycles with EfficientNet-B0 trained with standard
cross-entropy is 2h 28m 24s. The time spent performing 1K
training cycles with EfficientNet-B0 trained with CEOD is
2h 36m 29s. The time spent with the customCNN to perform
100 training cycles with standard loss is 4m 30s versus 4m
28s for the custom CNN trained with CEOD.

5.2.2 Industrial dataset

Table 2 shows the results of EfficientNet-B0 and the cus-
tom CNN on the industrial real-case dataset. From Table
2, we can see that the network trained with CEOD is bet-
ter in terms of accuracy in the validation phase. We can also
note the improvement of the network trainedwith fine-tuning
w.r.t. the network trained with only transfer learning. The
slight worsening of the loss is probably due to the fact that,
unlike the experiment done on the MVTec AD benchmark
dataset, this industrial dataset presents many more difficul-
ties. This is because it is representative of a real use case.
The sum of the OD part to the cross entropy leads to this
slight deterioration. This phenomenon does not occur on
the MVTec AD dataset because, being simpler, the network

Table 1 MVTec AD
Dataset.CE and Exp. are the
acronyms for Cross-Entropy
loss and experiment (in bold the
best results)

CNN Exp. Training validation
Accuracy Loss OD Accuracy Loss OD

EfficientNet-B0 CE 1.000 0.0049 - 0.992 0.022 -

CEOD 0.990 0.005 0.0005 1.00 0.010 0.00032

CustomNet CE 0.999 0.008 - 0.910 0.35 -

CEOD 0.998 0.010 0.0002 0.960 0.09 0.0003
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Fig. 10 Confusion matrices on test set of MVTec AD dataset obtained with EfficientNet-B0. 0_ND and 1_D represent the class without and with
defects respectively

Fig. 11 Confusion matrices on test set of MVTec AD dataset obtained with custom CNN. 0_ND and 1_D represent the class without and with
defects respectively

Fig. 12 In (a) there is the heatmap produced with the classification with
standard Cross-Entropy loss (CE) network. It is possible to see that the
defect on the zip is not highlighted, unlike the external defect in the

upper right. In (b) there is the heatmap produced by the network trained
with CEOD. In this case, the defect on the zip is highlighted, unlike
external defects which are not considered by the network
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Table 2 Industrial Dataset. For EfficientNet-B0, results for Transfer Learning (TL) and fine-tuning (ft) (in bold the best results)

CNN Exp. Training validation
Accuracy Loss OD Accuracy Loss OD

EfficientNet-B0 - TL CE 0.956 0.11 - 0.976 0.102 -

CEOD 0.957 0.10 0.00055 0.977 0.110 0.00036

EfficientNet-B0 - ft CE 0.990 0.00018 - 0.995 0.017 -

CEOD 1.000 0.0007 0.00038 0.998 0.045 0.00032

CustomNet - ft CE 1.000 0.00001 - 0.98 0.053 -

CEOD 1.000 0.00002 0.000017 0.9965 0.013 0.00002

Fig. 13 Confusion matrices on test set of the industrial dataset obtained with EfficientNet-B0. 0_ND and 1_D represent the class without and with
defects respectively

Fig. 14 Confusion matrices on test set of the industrial dataset obtained with the custom CNN. 0_ND and 1_D represent the class without and with
defects respectively
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trained with CEOD can clearly exceed that trained with the
standard loss and therefore the effect of the sum of the ODs
does not lead to worsening the loss. However, despite the
excellent results obtained through the network trained for
standard classification, with CEOD we are able to obtain
a further increase in performance. Figures 13 and 14 show
the results of EfficientNet-B0 and the custom CNN on the
test set of the industrial dataset. In Figures 13 and 14, we
can see that the networks trained with CEOD obtain better
results in terms of defect identification at the expense of a
slight worsening in the identification of non-defective ones.
EfficientNet-B0 trained with CEOD reach 98.9% accuracy
and 0.99 of AUCROC compared to EfficientNet-B0 trained
with standard cross-entropy that reaches 98.8% accuracy and
0.98 of AUCROC on the test set. The custom CNN trained
with CEOD reaches 95.4% accuracy and 0.95 of AUCAUC
as compared to the CNN trained with the standard loss that
reaches 93.3% accuracy and 0.93 of AUCROC on the test
set. The time spent performing 360 training cycles with
EfficientNet-B0 trained with standard cross-entropy is 9h
25m 31s. The time spent performing 360 training cycles with
EfficientNet-B0 trained with CEOD is 8h 12m 47s. The time
spent with the custom CNN to perform 80 training cycles
with standard loss is 1h 44m 25s versus 1h 44m 5s for the
custom CNN trained with CEOD.

6 Conclusions

The aim of this work is to improve the use of a CNN in
the field of anomaly detection by stimulating the network
to pay attention mainly to a specific part of an image, to
avoid the identification of part of images containing noise
defects in the background. This work presents a new loss
that acts as an attention mechanism to make a neural net-
work focus on a specific part of an image (called Area of
Interest - AOI). This area might not even be the same along
all the datasets. This goal of our work was achieved by
extending the Szymkiewicz - Simpson Overlap coefficient
to obtain what we have defined Overlap Distance (OD). All
these contributions were added to the loss function used for
the classification task (cross-entropy loss). The experiments
show that our approach performs better than standard cross-
entropy on both benchmark and industrial real-case datasets.

The introduction of the Overlap Distance (OD) as an
attention mechanism represents a significant advancement in
anomaly detection using convolutional neural networks. By
focusing the network’s attention on specific Areas of Inter-
est (AOI), we mitigate the risk of false positives caused by
background noise defects. This innovation holds promise not
only in image processing but also in various domains where
precise attention allocation is crucial.

The next step for this project is to try to apply this new
type of loss to an unsupervised learning framework. We are
studying away to implement this approach into GANs neural
network for anomaly detection. This is motivated by the high
suitability of GANs for the anomaly detection task in the
industrial sector.

The potential impact of this research extends beyond
anomaly detection,with implications for a range of industries
reliant on accurate image analysis and pattern recognition.
We believe that these advancements will contribute to more
robust and reliable quality control processes in the industrial
sector.
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