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A B S T R A C T

Breast screening with mammography is the most effective method of detecting early-stage breast cancer and
reducing related mortality. Among the intrinsic limits of mammography, in terms of clinical performance, the
overlapping of normal and pathological tissues is one of the most influential. Some new techniques as Digital
Breast Tomosynthesis (DBT) is expected to overcome this limitation by providing a quasi-three-dimensional (3D)
image that could lead to improve the accuracy of mammography. Another way to increase accuracy and sensi-
tivity is represented by a double exposure of the patient before and after intravenous injection of contrast media,
this technique is called Contrast-enhanced digital (or spectral) mammography (CEDM, CESM). Furthermore,
highly specialized software has been developed which is able to detect suspicious mammographic findings. This
technology is very interesting especially in the screening field, in fact there are multiple ongoing studies evalu-
ating the use of Artificial Intelligence (AI) as a second reader.

To date, screening mammography is the only imaging modality that has proven to significantly lower breast
cancer mortality. Tomosynthesis demonstrated excellent sensitivity and specificity but the technique did not meet
the expectations given the risk of over diagnosis as well as the lack of reduction in the number of interval breast
cancer. CESM could in some cases serve as an alternative imaging tool to MRI. AI, seems to be competing with the
breast radiologist and its use as a second reader in breast screening programs is already being proposed.
1. Introduction

Breast screening with mammography is the most effective method of
detecting early-stage breast cancer and reducing related mortality [1,2].
In Italy, screening for the early diagnosis of breast cancer is applied to
women aged between 50 and 69 and it is performed with a mammogram
every 2 years [3]. In some Italian regions effectiveness is being tested in a
broader age range, between 45 and 74. According to the local health care
authority the frequency has to be annual for women under 50 or for high
risk patients (i.e. previous surgery or familiarity). A large study published
in 2008, having reviewed the published researches on breast cancer
screening programs active in Europe, showed that mortality is reduced by
45% for women who undergo the screening [4]. This mean that for one
thousand women aged between 50 and 69, who are regularly screened
and followed up to 79 years of age, screening can save between 7 and 9
lives, as stated by the Italian ministry of health [5]. In Ref. [6] is reported
that at a mean glandular dose of 1.3 mGy per view, biennial
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1.3 mGy) we have potentially 7.4 extra cancer deaths. Therefore it comes
out that the ratio between prevented and potentially induced deadly
cancers is reduced to 175:1 (prevention would rise to 29.9). The
risk-benefit ratio decreases when MGD rises, as it happens when working
with thicker breasts. Each year, millions of women in Europe have a
screening mammogram. This may reduce the risk of dying from breast
cancer up to 50% [4,7,8]. It may, on the other hand, also cause breast
cancer and breast cancer deaths due to ionizing X-ray radiation. It has
been shown that the risk of tumor induction is proportional to the dose of
radiation absorbed in the breast [9–14]. Although radiation doses at
mammography are much lower than the doses for which cancer induc-
tion is directly observed [15] screening a large population on a regular
basis has the potential to harm. While saved life are clearly verified,
induced cancers that lead to death are not demonstrable due to the
non-specific nature of the stochastic damage. Moreover, the risk of
radiation-induced tumors decrease with increasing age because the lower
radiosensitive and the high latency period.

Among the intrinsic limits of mammography in terms of clinical
performance the overlapping of normal and pathological tissues is one of
the most effective. Indeed it can decrease the visibility of malignant
abnormalities or simulate the appearance of an abnormality. Some new
technique as Digital Breast Tomosynthesis (DBT) is expected to overcome
this limitation by providing a quasi-three-dimensional (3D) image that
could lead to improved accuracy of mammography [16–18]. Another
way to increase accuracy and sensitivity is represented by a double
exposure of the patient before and after intravenous injection of contrast
media, this technique is called Contrast-enhanced digital (or spectral)
mammography (CEDM, CESM) [19,20].

2. Dose and related risk

As stated in the European guidelines for quality assurance in breast
cancer screening and diagnosis (EUREF [21]), the acceptable dose level
for typical breast simulated with PMMA and relative equivalent breast
thickness is reported in Table 1. For a 2-view acquisition with Full Field
Digital Mammography (FFDM) the average MGD is 3.7 mGy [22] while
the lifetime attributable risk (LAR) is 1.3 per 100 000 women aged 40 (at
time of exposures) and 1 case per million for woman aged 80 (at time of
exposures).

In the early 2000s the photon counting detector (PCD) technology in
digital mammography was introduced. This led to a reduction of the
delivered doses from one third [23] up to 50% [24,25] compared to
traditional digital mammography.

An attempt to introduce a similar detecting technology in DBT was
performed but no longer available on market at present time.

By counting individual x-ray quanta rather than accumulating total
charge, it is possible to completely remove all background noise from the
image. The detector counts only the number of peak pulses, with no
conversion steps from x-ray photons to a digital signal leading to a
complete removal of Swank noise, electronic noise and noise due to the
quantification of the electrical signal from the detector. For the scintil-
lator based detectors, Swank noise, introduced by the statistical variation
Table 1
Dose levels for typical breasts simulated with PMMA.

Thickness of PMMA
(mm)

Equivalent breast
thickness (mm)

Maximum average glandular
dose to equivalent breast (mGy)

Acceptable
level

Achievable
level

20 21 �1.0 �0.6
30 32 �1.5 �1.0
40 45 �2.0 �1.6
45 53 �2.5 �2.0
50 60 �3.0 �2.4
60 75 �4.5 �3.6
70 90 �6.5 �5.1

2

of released light after the photon conversion [26], can be a serious cause
of image degradation. Two photons of the same energy can have different
responses in the detector, leading to an overall uncertainty in the inte-
grated signal. This effect can be present also in direct conversion energy
integrating detectors. The absence of Swank noise and the significant
removal of electronic noise is the major advantage of PC technology.

A full field digital mammography equipped with photon counting
detector, could produce good quality images for different breast thick-
ness as showed hereafter in Table 2.

3. Digital Breast Tomosynthesis

Breast screening with mammography is the most effective method of
detecting early-stage breast cancer and reducing breast cancer mortality,
as concluded by a meta-analysis of 11 randomized trials [27]. This study
evaluated that there is a 20% relative risk reduction in breast cancer
mortality in women invited to screening program. Nevertheless, 15–30%
of cancers are not detected by standard screening [28], and this value is
higher in women under 50 years old [29] and in women with dense
breast [30]. One of the intrinsic limits of mammography clinical per-
formances is the overlapping of normal and pathological tissues that can
decrease the visibility of malignant abnormalities or simulate the
appearance of an abnormality. This led to an increase in the number of
false-positive recalls [31] and a reduction of screening program
sensitivity.

Digital Breast Tomosynthesis (DBT) is expected to overcome this
limitation providing a quasi-three-dimensional (3D) image that could
improve the accuracy of mammography since it reduce overlapping
shadows that could degrade the clinical image quality in standard 2D
projection imaging. The logical outcome is that small size lesions and
distortions, which may be hidden by normal tissues in standard 2D
projection imaging, could be more readily detected using DBT, particu-
larly in women with radiologically dense breast. This improved accuracy
could lead to a decrease of false-positive recalls and associated health-
care costs and patient anxiety.

In DBT during the acquisition, 9 up to 25, depending on manufac-
turers, individual exposures are obtained at different angles, between 11
and 40�. The x-ray tube movement can be continuous or step-and-shoot.
In the former, the tube moves continuously during the scan acquisition
with pulsed x-ray minimizing blurring due to tube motion. In the latter,
the tube stops at each location delivering pulsed x-ray beam, reducing in
principle tube motion blurring but increasing the total scan time.

Tomosynthesis is a compromise between conventional digital
mammography and CT: DBT system can provide a quasi-3D image
improving the information of a digital mammography while minimizing
the complexities and patient dose of a CT [32]. The readers, at cost of an
additional time to read DBT images, are more able to identify lesions and
to differentiate between malignant and benign features, as reported by
F.J. Gilbert et al. [33].

The recent recommendations published by the Italian College of
Breast Radiology (ICBR) by the Italian Society of Medical Radiology
(SIRM) [34] summarize the evidences on DBT and provide recommen-
dations for its use. This publication underlines that DBT combined with
2D FFDM allows a better diagnostic performance than mammography
Table 2
Dose levels for typical breasts simulated with PMMA for Sectra MicroDose L30.

Thickness of PMMA
(mm)

Equivalent breast thickness
(mm)

Sectra MicroDose L30 AGD
(mGy)

20 21 0.4
30 32 0.6
40 45 0.6
45 53 0.6
50 60 0.8
60 75 0.9
70 90 0.8
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alone by means of eight prospective trials [17,18,35] and retrospective
studies [36–41]. In the important Houssami review [42], it is reported
that DBT plus 2D digital mammography provides an increase in cancer
detection rate from 0.5 to 2.7 per thousand screened woman and a
reduction in false positive recall rate from 3.6 to 0.8 per 100 screened
women.

Some studies as the OTST trial [18,35,43], the Italian STORM trial
[17], the Malmo Breast Tomosynthesis Screening Trial [36,44], the work
of Rose et al. [45], and Friedwald et al. [37] confirm that DBT combined
with mammography allows a better diagnostic performance than
mammography alone as confirmed by the results summarized in Table 3
show that coupling FFDM with DBT increases sensitivity and specificity.

Radiation dose delivered with DBT plus 2D digital mammography is
clearly higher than that delivered with standard mammography alone. In
the last years, manufacturers improved detector technical features and
introduced a 2D synthetic image reconstructed from the DBT projections
and this led to a sensible reduction of delivered doses. There is an op-
portunity to use synthetic 2D images in combination with DBT instead of
conventional FFDM with only a slight increase in dose compared with
FFDM and DBT. Today, the radiation dose delivered in a DBT exam are
comparable to that delivered with digital mammography [46]. Once
synthetic 2D images have been shown as an acceptable alternative, the
marginal increase in radiation dose becomes much less of an issue.

However it seems to be unrealistic for a large part of the breast
radiologist community, at present, to justify a screening program based
on substituting traditional digital mammography with DBT because there
is a demonstrated issue of over diagnosis and there is no evidence of
reduction of interval cancer (developed cancer between two consecutive
screening rounds) [43].

4. Contrast enhanced spectral mammography (CESM)

Currently, there are some FFDM units with devices and software able
to perform breast examinations after contrast medium intravenous in-
jection, subtracting the high and low energy acquisition mammograms -
CESM or CEDM (contrast enhanced digital mammography). In some
cases, this technique, still considered experimental, might replace Breast
MRI exam at a lower cost and logistic advantage.

CESM is a novel breast imaging technique that combines standard full
field digital mammography (FFDM) with contrast-enhanced high- and
low-energy images. The iodinated contrast agent tends to highlight re-
gions with vasculature that is increased and leaky—two characteristics of
malignant lesions. The low-energy images provides detail of soft tissue
and calcifications similar to standard FFDM. Digitally subtracted images
remove the normal mammary glandular tissue and highlight areas of
angiogenesis to help detect breast malignancies.

As reported in Ref. [47] CESM results in higher radiation exposure
compared with conventional 2D FFDM and 3D tomosynthesis. Although
radiation dose is increased, CESM provides the radiologist with both a
standard low-energy image (similar to 2D FFDM) and a
Table 3
Clinical studies comparing FFDM with DBT-FFDM in screening population. CDR:
cancer detection rate; FPR: false positive rate; RR: recall rate.

Study FFDM DBT (one view) FFDM þ DBT

OTST trial FPR: 6.1% FPR: 5.3%
CDR: 6.3‰
RR: 6.7%

CDR: 9.3‰
RR: 3.6%

STORM trial FPR: FPR: þ 17%
CDR: 5.3‰
RR: 4.4%

CDR: 8.1‰
RR: 3.5%

Malmo RR: 2.5% RR: 3.6%
CDR: 6.5‰ CDR: 8.7‰

Rose CDR: 2.8‰
RR: 8.7%

CDR: 4.3‰
RR: 5.5%

Friedewald CDR: 4.2‰
RR: 10.7%

CDR: 5.4‰
RR: 9.1%

3

contrast-enhanced image that highlights areas of angiogenesis. Initial
evaluation suggests a clinical benefit with CESM because of added
physiologic information. The added imaging detail gained from CESM
likely offsets the incremental increase in AGD, which is still within the
range permitted by applicable regulations. However, further studies must
be performed, particularly to quantify CESM radiation dose as a function
of varying breast density and in subpopulations of patients appropriate
for this examination.

In [48] results indicate that CESM has the potential to be a valuable
diagnostic method that enables accurate detection of malignant breast
lesions, has high negative predictive value, and a false-positive rate
similar to that of breast MRI. CESM and MRI examinations were per-
formed in 102 patients who had suspicious lesions described in con-
ventional mammography. All visible lesions were evaluated
independently by 2 experienced radiologists using BI-RADS classifica-
tions. A comparison between CESM and MRI, a CESM sensitivity of 100%
compared to 93% of MRI was found, while accuracy raised up 79%
compared to 73% of MRI. In Ref. [49] CESM has comparable diagnostic
performance (ROC-AUC) to MRI for breast cancer diagnostics, in com-
bination with MG does not improve diagnostic performance and a lower
sensitivity but higher specificity than MRI was found with CESM.
Furthermore sensitivity differences are more pronounced in dense and
not significant in non-dense breasts.

5. Artificial Intelligence

Computer-aided detection (CAD) systems were introduced in the last
decades as an aid for radiologists, in order to improve human detection
performance. No study has found any direct improvement in perfor-
mance [50,51]. To date, highly specialized software has been developed
which is able to detect suspicious mammographic findings. This tech-
nology is very interesting especially in the screening field, in fact there
are multiple ongoing studies evaluating the use of Artificial Intelligence
(AI) as a second reader. New developments in deep learning algorithms
are leading to an improvement of the performances of this kind of sys-
tems [52].

In [53] screening digital mammographic examinations from 240
women were interpreted by 14 radiologists, with and without AI support.
This support provided radiologists with interactive decision support,
traditional lesion markers for computer-detected abnormalities, and an
examination-based cancer likelihood score. This study demonstrated that
sensitivity improved from 83% to 86% with aid of AI and specificity
improved from 77% to 79%. No increment of reading time was
highlighted.

Rodriguez-Ruiz et al. [54] used nine multi-reader, multi-case study
datasets of digital mammography for an amount of more than 2000
exams, of which more than 600 malignant, interpreted by one hundred
radiologists and one AI system. The evaluated system achieved a per-
formance statistically comparable to radiologists one.

Watanabe et al. [55] performed a blinded retrospective study using a
cancer-enriched data set from 122 patients including 90 false-negative
mammograms. The readers detected, averagely, 51% of early cancers
without aid of AI software and this percentage raised up to 62% with
assistance of AI while less than 1% increase in false positive recalls was
found using AI.

The mentioned studies, and more, seems to led to an improvement of
the performances of AI based software. This could be a great contribution
to cancer detection in screening programwithout an increase in radiation
dose to the patients.

6. Conclusions

Screening mammography is the only imaging modality that has
proven to significantly lower breast cancer mortality to date. Digital
mammography, specifically Full Field Digital Mammography is the
obligatory requisite technique. Approximately 10 years ago,
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tomosynthesis, a pseudo 3D mammography technique was introduced
(as an adjunct to 2D mammography), aiming to reduce the limitations of
the 2D mammogram. Tomosynthesis demonstrated excellent sensitivity
and specificity and came across as the best breast cancer screening tool.
However, the technique did not meet the expectations given the risk of
over diagnosis as well as the lack of reduction in the number of interval
breast cancer. Conversely, the recent fine adjustments made to dual-
energy subtraction and Artificial Intelligence (AI) software, in combi-
nation with FFDM, are revolutionizing the world of breast imaging. Dual-
energy subtraction or CESM enables the acquisition of mammography
post intravenous iodinated contrast administration. Same as in MRI, a
vascularized lesion would demonstrate increased contrast enhancement
secondary to the phenomenon of neo-angiogenesis that occurs in
cancerous lesions, making the lesion visible even if the breast is dense. In
the near future, this technique could in some cases serve as an alternative
imaging tool to MRI. On the other hand, AI, seems to be competing with
the breast radiologist in identifying suspicious findings on mammogram,
and its use as a second reader in breast screening programs is already
being proposed.
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