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ABSTRACT

The evaluation and consideration of the mean flow in wave evolution equations are necessary for the accurate prediction of fluid particle
trajectories under wave groups, with relevant implications in several domains, from the transport of pollutants in the ocean to the estimation
of energy and momentum exchanges between the waves at small scales and the ocean circulation at large scale. We derive an expression of
the mean flow at a finite water depth, which, in contrast to other approximations in the literature, accurately accords with the deep-water
limit at third order in steepness and is equivalent to second-order formulations in intermediate water. We also provide envelope evolution
equations at fourth order in steepness for the propagation of unidirectional wave groups either in time or space that include the respective
mean flow term. The latter, in particular, is required for accurately modeling experiments in water wave flumes in arbitrary depths.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0164784

I. INTRODUCTION

As waves evolve on the ocean surface, they induce a mean flow to
the fluid particles, particularly when nonlinear effects are taken into
account. Near the surface, fluid particles experience a net horizontal
displacement in the same direction as the water wave propagation, the
so-called Stokes drift,1,2 that decays with depth. A return flow in
the fluid column along vertical and horizontal directions guarantees
the conservation of the water-mass transport, causing localized varia-
tions in the mean water level under wave groups and the associated
propagation of infragravity waves3 at a finite water depth. An accurate
description of the mean flow is, thus, necessary for the proper recon-
struction of the fluid particle trajectories underneath water waves.4,5

Since the wave-induced mean flow is associated with the transport of
energy, momentum, and other tracers,6 such as pollutants like plastic7

or offshore oil spill,8 it is relevant for environmental studies.
Moreover, it has an impact on the general circulation of the ocean at
large scales and its modeling,9–12 and on the nearshore circulation,3,13

in particular in shoaling regions,14,15 while it is affected by the presence
of background shear currents.16,17

Since Stokes drift and return flow are two phenomena occurring
at second order in steepness, they are taken into account in the finite
water depth nonlinear Schr€odinger equation (NLS), which describes
the evolution of the envelope of narrow-banded wave packets and can
be obtained using a multi-scale development of water surface elevation
and velocity potential at third order in steepness,18–21 or taking the
narrow-banded limit of the Zakharov equation using an Hamiltonian
approach.22,23 Indeed, at third order in steepness, it was shown20 that
the mean flow term comes into play as a modification of the nonlinear
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coefficient, giving rise to a transition from focusing to defocusing
regimes at the critical value k0h � 1:363, where k0 is the carrier wave-
number and h the depth. However, this contribution to the nonlinear
coefficient disappears in the deep-water limit. At fourth order in steep-
ness, the accurate formulation of the mean flow term needs to be
accounted for, in both, finite and infinite depth waters.24

Fourth-order terms in the NLS equation are necessary to explain
features like asymmetrical evolution of spectra25 and asymmetries in
the waveform,26–30 especially when inevitable wave focusing is at
play.31 Several versions of high-order wave envelope evolution equa-
tions exist in the literature, which can be obtained when applying the
multiple scales development using steepness and bandwidth with dif-
ferent orders of magnitude24,32–34 or the Hamiltonian approach.23,35–38

The main difference between all these equations is the treatment and
approximation of the mean flow term.

Here, we will focus on narrow-banded unidirectional wave pack-
ets where steepness and bandwidth can be considered as parameters of
the same order, like in the finite-depth developments described in
Refs. 39 (denoted as Sed03 in the following) and 40 (Slu05). The chal-
lenge of such developments is the fact that they do not reduce to the
Dysthe equation (Ref. 24, Dys79) in the deep-water limit, which has
been shown to well reproduce wave tank experiments.28 We will show
that this convergence depends on how the mean flow is approximated.
Moreover, we will provide finite-depth envelope equations at fourth
order in steepness in both space-like and time-like formulations, with
correct limiting expressions in deep water. In particular, such unidirec-
tional time-like equations that allow a continuous scaling from inter-
mediate to the deep water limit are relevant for reproducing wave tank
experiments with high accuracy in arbitrary depths. In contrast, direc-
tional sea states are typically found in the open ocean, and this restricts
the applicability of the above unidirectional modeling equations.

The paper is organized as follows: In Sec. II, we will derive the
expression of the mean flow to be inserted in the envelope equation at
fourth order in steepness for the evolution in time. We will compare
this expression with the ones already existing in the literature and
show that it indeed correctly describes the mean flow in the whole
range of water depths, i.e., from intermediate to deep water regimes. In
Sec. III, we will provide an envelope equation for the water wave evo-
lution in space, relevant for modeling, for instance water tank experi-
ments, and the corresponding mean flow term, at fourth order in
steepness. Again, we will perform the comparison for various water
depth scenarios. Finally, in Sec. IV, we will summarize our findings.

II. FOURTH-ORDER EQUATION: PROPAGATION
IN TIME

The multi-scale approach has been used to derive at fourth order
in steepness the following equation, which describes the evolution of
the envelope U of a unidirectional progressive gravity wave packet
propagating in time on the free surface of a homogeneous liquid with
depth h,39–41

i
@U
@t
þ cg

@U
@X

� �
þ â

@2U
@X2

�b̂jU j2U|fflfflfflfflffl{zfflfflfflfflffl}
incl:Mean Flow

¼ i â3
@3U
@X3
�b̂21jUj2

@U
@X
� b̂22U

2 @U
�

@X|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
incl:Mean Flow

0
B@

1
CA: (1)

The explicit formulation of the group velocity cg and of all dispersive
and nonlinear coefficients â; b̂; â3; b̂21, and b̂22 is given in
Appendixes A and B. The surface tension has been neglected, and the
fluid is considered as irrotational. The sign convention follows Sed03:
The surface elevation is reconstructed at leading order from the enve-
lope using42 gðX; tÞ ¼ 1

2 ½UðX; tÞ exp ðiðk0X � x0tÞÞ þ c: c:�, where
x0 and k0 are the angular frequency and wavenumber of the carrier
wave, respectively.

Equation (1) is referred to as the “space-like equation” since dis-
persion is in space. It can also be written in the following equivalent
form39 in a reference frame moving with the group velocity
x ¼ X � cg t,

i
@U
@t
þ e â

@2U
@x2
� b̂DjUj2U

� �

¼ ie2 â3
@3U
@x3
� x0k0 ~Q41jU j2

@U
@x
� x0k0 ~Q42U

2 @U
�

@x

� �

þ
lgk0
4r

U
@/0

@x|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Mean Flow

; (2)

where r ¼ tanhðk0hÞ, lg is given in Eq. (A15), and the high-order
nonlinear coefficients ~Q41 and ~Q42 in Eqs. (B4) and (B7), respectively.
The nonlinear term b̂D is a positive function (see Fig. 1), given in Eq.
(A9), and since the dispersion coefficient â is negative, it seems that
the characterization of the focusing and defocusing regime is somehow
lost in the present formulation.

Notice that we explicitly introduce the scaling parameter e, a
dummy variable which is set to 1 at the end, that is helpful for group-
ing terms of the same order in steepness. The last term, depending on
the zero harmonic of the velocity potential /0, is the mean flow term
that, from the multi-scale development, takes the following form [see
Eqs. (35) and (57) in Sed03]:

FIG. 1. Third-order nonlinear coefficients b̂ and b̂D in Eqs. (1) and (2), respectively,
normalized with respect to their deep-water values, which are equal. Zero crossing
for b̂ is at k0h ¼ 1:363, shown by the dotted vertical line.
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@/0

@x
¼ e

x0

2

lgk0
r�
jU j2 � ie2

4x0r
�

~q40S U
@U�

@x
� U�

@U
@x

� �
; (3)

with � given in Eq. (A16) and ~q40S in Eq. (B10). Its contribution can
be included into the coefficients b̂D; ~Q41; ~Q42 to obtain b̂; b̂21; b̂22,
respectively, in Eq. (1) [see steps from Eqs. (40) to (42) and from Eqs.
(64) to (66) in Sed03]. Thus, the mean flow term is already taken into
account in Eq. (1) at fourth order in steepness through the nonlinear
coefficients.

We remark that from Eq. (3), in the deep-water limit, @/0=@x !
0 since � !�1, while all the other coefficients are finite. This agrees
with the developments at third order in steepness.20,43 Note that in the
1D shallow-water case, the mean flow term modifies the nonlinear
term, see Eq. (2.21) in Ref. 20, while its contribution vanishes in the
deep-water limit. However, the fact that the contribution of mean flow
remains zero in deep water at higher-order approximation in steepness
is not ideal, as we will discuss in the following subsection.

A. Mean flow in the deep-water limit

In the Dysthe equation (Dys79), i.e., the evolution equation
obtained in the deep-water limit with the multi-scale method at fourth
order in steepness, an additional term corresponding to the wave-
induced mean flow usually appears in the literature in both space-
like24,32,44 and time-like 1D formulations.28,45–48 Let us consider for
the moment the propagation in time. The Dysthe equation reads

i
@U
@t
� x0

8k20

@2U
@x2
� x0k20

2
jU j2U

¼ i
x0

16k30

@3U
@x3
� i

x0k0
2

3jU j2 @U
@x
þ 1
2
U2 @U

�

@x
þ 2i

x0
U
@/0

@x|fflfflfflfflffl{zfflfflfflfflffl}
Mean Flow

0
B@

1
CA:
(4)

In this deep-water limit, the mean-flow term is written as28,47

@/0

@x

����
z¼0
¼ x0

2
Hx

@jU j2

@x

� �
; (5)

where F x is the Fourier transform in space, andHx the Hilbert trans-
form, Hx½g� ¼ F�1x ½þi sgnðkÞF x½g��, with g being a function of x.
The role of the mean flow Hilbert term in the evolution of pulsating
wave packets25 and narrow-banded irregular waves27,28 has been
shown in several experiments in deep water, and its presence is
required for a correct modeling.26

Janssen32 suggested that the system can be closed by solving the
equations for /0 as a function of the envelope U in the Fourier space.
It is instructive to report here the explicit derivation of the Hilbert
term since we will use analogous developments in the following. The
zero harmonic of the velocity potential /0 satisfies the Laplace equa-
tion in the entire water column with boundary conditions at the sur-
face and at the bottom, giving a set of equations that constitutes the
following Neumann problem:

@2/0

@z2
þ @

2/0

@x2
¼ 0�1 < z � 0; (6a)

@/0

@z
¼ x0

2
@jU j2

@x
z ¼ 0; (6b)

@/0

@z
¼ 0 z ! �1 (6c)

Substituting the Fourier transform of the mean flow

F x/0ðx; z; tÞ ¼ /̂0ðk; z; tÞ ¼
1ffiffiffiffiffi
2p
p

ð1
�1

/0ðx; z; tÞeikxdx (7)

into the Laplace equation gives @2/̂0=@z
2 ¼ k2/̂0 whose solution is

/̂0ðk; z; tÞ ¼ C1e
jkjz (8)

with C1 independent of z. This satisfies the bottom boundary condi-
tion for z ! �1.

Inserting this expression in Eq. (6b) gives

jkjC1e
jkjzjz¼0 ¼ jkjC1 ¼

x0

2
F x

@jUj2

@x

� �
; (9)

from which C1 is obtained, and thus,

/̂0ðk; z; tÞ ¼
1
jkj

x0

2
ejkjzF x

@jU j2

@x

� �
: (10)

Now the derivative with respect to x at z¼ 0 in the Fourier space is
given by

F x
@/0

@x

� �����
z¼0
¼ ik/̂0jz¼0 ¼ i

x0

2
sgnðkÞF x

@jUj2

@x

� �
; (11)

and finally, moving back to the direct physical space, the Hilbert term
of Eq. (5) is recovered.

B. Multi-scale development and Hilbert term

As discussed, the multi-scale approach of Sed03 gives Eq. (3),
which in the deep-water limit reduces to

@

@x
ð/01 þ /02Þ ¼ 0: (12)

On the other hand, the mean flow can be written as the Hilbert term of
Eq. (5) in the Dysthe equation.24,32 Thus, there is the need to reconcile
these results. This can be done as follows. In the derivation of the Hilbert
term, we use the Laplace equation for /0 that is the complete mean flow,
and not just its approximation at second order in steepness as in Eq.
(12). Indeed, the Laplace equation at third order for the mean flow is

@2/03

@z2
þ @

2/01

@x2
¼ 0: (13)

When integrated in z, this gives

@/03

@z
¼ �ðz þ hÞ @

2/01

@x2
; (14)

using the fact that @/01=@z ¼ 0 and imposing the bottom boundary
condition. From the multi-scale development, the following expression
can be obtained at third order in steepness [see Eqs. (2.12) and (2.14)
in Ref. 20]:

c2g
g
@2/01

@x2
þ @/03

@z
¼ x0

2r
ð1þ CFDÞ

@jU j2

@x
¼ D0

@jU j2

@x
; (15)

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 087128 (2023); doi: 10.1063/5.0164784 35, 087128-3

VC Author(s) 2023

 03 N
ovem

ber 2023 13:25:55

pubs.aip.org/aip/phf


with the coefficient CFD defined in Eq. (A17) and in Ref. 4, where
D0 ¼ ð1þ CFDÞx0=ð2rÞ ¼ lgx0=ð8r2Þ (see definitions in Appendix
A). Using Eq. (14) at z¼ 0, Eq. (15) reduces to

@2/01

@x2
¼ �D

h
@jUj2

@x
; (16)

which corresponds to Eqs. (33) and (34) in Sed03, where D is defined
in Eq. (A13). Equation (16) can also be written, using Eq. (14), as

@/03

@z
¼ D

@jU j2

@x
: (17)

Taking the deep-water limit gives Eq. (6b), i.e., the boundary condition
at the surface in the Neumann problem. Since @/01=@z ¼ 0 and
@/02=@z ¼ 0, such expression is valid at third order in steepness for
the mean flow.

Thus, in the derivation of the Hilbert term, the complete mean
flow (in the Laplace equation) is considered together with the mean
flow at third order in steepness in the surface boundary condition.
Consequently, a “hybrid” relation as described by Eq. (5) is obtained,
which is different from Eq. (12) where only the first terms in the devel-
opment of the mean flow at the surface are taken into account. In
other words, the expression in Eq. (5) is inherently nonlocal. The same
occurs in the nonlinear terms of the supercompact model,49 from
which the Dysthe equation can be derived. The terms in Sed03 and
Slu05 are instead local, as they only involve the surface, and not the
entire water column. This is obviously an approximation, since the
mean flow does involve a body of fluid, which is not immediately at
the surface, as clearly shown in field measurements.3

C. Mean flow term in arbitrary depth

We now repeat the procedure used in Sec. IIA for the case of
intermediate water. We will consider two cases that differ based on the
considered surface boundary condition: The Neumann problem is
solved using the condition given by Eq. (17) in case 1, using Eq. (15)
in case 2. Replacing the expression of @/0=@x that is obtained in each
case into the last term of Eq. (2) gives the final high-order NLS equa-
tion in an arbitrary finite depth and in the space-like form.

1. Case 1

Moving as before to the Fourier space, the Laplace equation is
@2/̂0=@z

2 ¼ k2/̂0 and its solution is given by

/̂0ðk; z; tÞ ¼ C1e
jkjðzþhÞ þ C2e

�jkjðzþhÞ: (18)

Imposing the boundary condition at the bottom, Eq. (6c), gives

@/̂0

@z

����
z¼�h

¼ jkjðC1 � C2Þ ¼ 0: (19)

Thus, we have C1 ¼ C2 ¼ C=2 and

/̂0ðk; z; tÞ ¼ C cosh jkjðz þ hÞð Þ: (20)

Inserting this in Eq. (17) gives

jkjC sinh jkjðz þ hÞð Þjz¼0 ¼ DF x
@jU j2

@x

� �
; (21)

from which one obtains C and therefore,

/̂0 ¼
1
jkj

cosh jkjðz þ hÞð Þ
sinh jkjhð Þ DF x

@jUj2

@x

� �
: (22)

At z¼ 0, this gives

/̂0jz¼0 ¼ D
coth jkjhð Þ
jkj F x

@jUj2

@x

� �
: (23)

Now, the derivative with respect to x at z¼ 0 is given by

F x
@/0

@x

� �����
z¼0
¼ ik/̂0jz¼0 ¼ iD

sgnðkÞ
tanhðjkjhÞ F x

@jU j2

@x

� �
: (24)

Moving back to the direct physical space, we finally get

@/0

@x
¼ DF�1x

i
tanhðkhÞ F x

@jU j2

@x

� �( )
: (25)

2. Case 2

The surface boundary condition is now Eq. (15). Note that the
relation /03z ¼ �h/01xx has not been used to simplify the lhs of this
equation, and both mean flow terms are, thus, considered being of the
same order, see Eq. (13) in Ref. 4.

Inserting the generic form of the solution in intermediate water,
i.e., Eq. (20), into the surface boundary condition, Eq. (15), gives

C
c2g
g
ð�k2Þcoshðjkjðz þ hÞÞ þ jkjsinhðjkjðz þ hÞÞ

" #����
z¼0

¼ D0F x
@jU j2

@x

� �
; (26)

from which we obtain the following expression for C(k, t):

Cðk; tÞ ¼ D0

k tanh ðkhÞ 1� c2gk=ðg tanh ðkhÞÞ
h i 1

coshðkhÞF x
@jUj2

@x

� �
;

(27)

where we used jkjtanhðjkjhÞ ¼ ktanhðkhÞ, and cg is the wave group
speed at the carrier wavenumber. Performing analogous steps as in the
previous case, the final expression for the Euler horizontal velocity in
z¼ 0 is

@/0

@x
¼ D0F�1x

i

tanhðkhÞ 1� c2gk=ðg tanh ðkhÞÞ
h iF x

@jU j2

@x

� �8<
:

9=
;:
(28)

Note that this expression coincides with Eq. (15) in Ref. 4 (apart from
a sign that is a typo in that latter equation).

By performing the derivative in x on the rhs of Eqs. (25) or (28),
considering that D ¼ D0=ð1� c2g=ðghÞÞ and using cothy ¼ 1=y
þOðyÞ, we get in both cases 1 and 2 for small kh numbers,
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@/0

@x
� DF�1x iðikÞcothðkhÞF x jU j2

	 
	 

�DF�1x � 1

h
F x jU j2
	 
� �

¼ �D
h
jU j2 ¼ x0

2

lgk0
r�
jUj2: (29)

Thus, we recover the first term on the rhs of Eq. (3). The NLS nonlin-
ear coefficient is also recovered when the mean flow term is added to
the third-order nonlinear term in Eq. (2), since
b̂ ¼ b̂D þ D2�=ð2h2x0Þ. Hence, the defocusing regime is recovered
through the inclusion of the mean flow term.

D. Numerical comparisons

We compare the expressions for the horizontal velocity @/0=@x
listed in Table I with the sub-harmonic velocity potential /20 at second
order in steepness and its horizontal derivative calculated using the
Dalzell analytical method [see the original paper, Ref. 50 (Dal99), and
the explicit formulas reported in the Appendix of Ref. 51].

For benchmarking and validation purposes, we use the same
parameters as in Ref. 51 (case C in their Table II), namely, a Gaussian
(amplitude) spectrum S(k) with peak wavenumber k0 ¼ 0:0277 m�1,
wavelength k0 ¼ 2p=k0, standard deviation of the spectrum given by
symmetrical values kw ¼ kw1 ¼ kw2 ¼ 0:27k0, steepness e ¼ 0:3, and
different values of the normalized depth k0h in the range ½0:5; 50�,
thus the case of finite and infinite water depth conditions. The angular
frequency is calculated from x2

0 ¼ gk0tanhðk0hÞ. In particular, the
surface elevation at first order in steepness given by the superposition
of N¼ 30 waves is used to calculate the intensity of wave envelope, i.e.,
jU j2, and then, the horizontal velocity @/0=@x through the different
relations, as listed in Table I. We consider a focused wave group, com-
posed of N individual sinusoidal wave components that are in phase at
a single point in time and space52 (the origin in our case), and a ran-
dom sea state by using a uniform distribution for the phases. An
example of sea state realization is given in Appendix D.

The results are summarized in Fig. 2 for waves focusing at x¼ 0,
and in Fig. 3 for the case of waves superposition with random phases.
In both cases, we see that the horizontal velocity calculated by Eq. (29)
(gray line), which corresponds to the second-order expression in
Sed03, reproduces well the Dalzell waveform (green line) only for
k0h � 2 and cannot be applied in deep water where it gives a wave-
form amplitude much smaller than Dysthe’s result (black line). On the
contrary, Dysthe’s expression should not be used for k0h < 10 as in
our considered cases, especially for large amplitude waveforms, where
it does not attain Dalzell’s accuracy. Although an elementary consider-
ation of the dispersion relation suggests that k0h � 5 should be

indistinguishable from k0h!1, the dynamics of the mean flow is
consistently different from this limit up to k0h ¼ 10. The expressions
for the horizontal velocity given by case 1 [Eq. (25)] and case 2 [Eq.
(28)] behave in a similar way at all depths, providing in general an
approximation that corresponds well to the Dalzell solution in inter-
mediate waters, and to Dysthe in deep waters. It is also important to
note that the expressions provided in Sed03 and Slu05 at third order
in steepness [Eqs. (3) and (C10), respectively], give different results
and do not correspond to the other models at any depth.

More detailed features can be deduced from Fig. 4, where the
deviation operator with respect to the Dysthe expression, defined

as DDysthe ¼ N�1
Ð
ð/0x � /Dysthe

0x Þ2 dx, and to the Dalzell one,

DDalzell ¼ N�1
Ð
ð/0x � /Dalzell

0x Þ2 dx, with /0x ¼ @/0=@x, is shown as
a function of the non-dimensional water depth k0h. The integral is cal-
culated over L ¼ 80k0, and the normalization coefficient is
N ¼ ðx0DWk0Þ2L, with x0DW calculated in deep water (DW). The
Stokes series expansion of the velocity potential (and thus Dalzell’s
model) converges in shallow water53 if 3e=ð2k0hÞ3 � 1, thus at low
Ursell number, which implies in our case k0h	 0:48. This region is
excluded in Fig. 4. It can be seen that the expression for the horizontal
velocity given by case 2 [Eq. (28)] is accurate at second order at all
depths, almost superposing to the second-order Dalzell solution, while
the one given by case 1 [Eq. (25)] is the only expression that consis-
tently converges to the Dysthe in the deep-water limit expression and
is equivalent to case 2 for k0h < 5. Note that the third-order correc-
tions provided in Sed03 [Eq. (3)] and in Slu05 [Eq. (C10)] are different
and do not extend the validity to deeper water regimes of the second-
order expression [Eq. (29)], which is accurate for k0h < 2 [see Fig.
4(b)]. This raises a warning on the quantitative accuracy of these
third-order expressions.

III. FOURTH-ORDER EQUATION: PROPAGATION
IN SPACE

In order to transform Eq. (1) to an expression describing the
propagation in space, that is necessary to describe the nonlinear evolu-
tion of waves in a laboratory flume, a change of variables is needed,

s ¼ e t � x
cg

� �
; n ¼ e2x: (30)

Through this transformation, the third-order terms are only subject to
a rescaling,

a ¼ â
c3g

; b ¼ b̂
cg
: (31)

TABLE I. List of mean flow terms in space-like formulation: @/0=@x.

Case 1 Eq. (25) Third-order, nonlocal
Case 2 Eq. (28) Third-order, nonlocal
Dys79 (Ref. 24) Eq. (5) Third-order, nonlocal deep water
Sed03 (Ref. 39) Eq. (3) Third-order
Sed03 Eq. (29) Second-order
Slu05 (Ref. 40) Eq. (C10) Third-order

TABLE II. List of mean flow terms in time-like formulation: @/0=@t.

Case 1 Eq. (39) Third-order, non-instantaneous
Case 2 Eq. (40) Third-order, non-inst.
Dys79 (Ref. 24) Eq. (36) Third-order, non-inst. deep water
Sed03 (Ref. 39) Eq. (38) Third-order
Sed03 1st term on rhs

of Eq. (38)
Second-order

Slu05 (Ref. 40) Eq. (C11) Third-order
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The higher-order terms are instead dramatically modified. Indeed, a
mixed derivative appears from the second-order dispersion term,
@2U=@x2, that reads as �ðx00=cgÞ@2U=@x@t. In the multiscale spirit,
the time-like NLS (i.e., terms at third order in steepness) is used to esti-
mate this term, which results in corrections at fourth order. The result-
ing time-like form of the evolution equation does not appear explicitly
in the literature and is given by (setting e ¼ 1, and changing the nota-
tion as s! t and n! x)

i
@U
@x
þ a

@2U
@t2
�bjU j2U|fflfflfflfflffl{zfflfflfflfflffl}
incl:Mean Flow

¼ �ia3
@3U
@t3
þib21jU j2

@U
@t
þ ib22U

2 @U
�

@t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
incl:Mean Flow

;

(32)

whose dispersion and nonlinear coefficients are given in Appendixes
A and B, and their dependence on k0h is shown in Figs. 5 and 6.

High-order dispersion terms54 are easily included up to arbitrary order
following Refs. 55 and 56, reducing the constraints in the bandwidth
of the original Dysthe equation.

Using the relation39

@/01

@t
¼ �cg

@/01

@x
; (33)

Eq. (32) can be rewritten in the following equivalent form:

i
@U
@x
þ a

@2U
@t2
� bDjU j2U ¼ �ia3

@3U
@t3
þ iB21jU j2

@U
@t

þ iB22U2 @U
�

@t
�

lgk0
4rc2g

U
@/0

@t|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Mean Flow

; (34)

FIG. 2. Mean flow /0x for N¼ 30 waves
focusing at x¼ 0 as described by the
expressions listed in Table I, for different
values of k0h.
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FIG. 3. The same as Fig. 2 for the evolu-
tion of N¼ 30 waves with random
phases.

FIG. 4. Deviation operator with respect to
the Dysthe expression (a) and to the
Dalzell one (b) for the derivative in space
/0x , as defined in the main text, for the
different cases listed in Table I.
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where bD ¼ b̂D=cg , B21 ¼ x0k0 ~Q41=c
2
g � 4abDcg , B22 ¼ x0k0 ~Q42=

c2g � 2abDcg, with b̂D, a, a3 given in Appendix A and ~Q41; ~Q42 in
Appendix B. The dependence of the nonlinear coefficients on k0h is
illustrated in Fig. 6. Note that b;b21;b22;B21, and B22 diverge quite
strongly for k0h! 0, i.e., particularly in the defocusing regime. That
said and as can be also analytically verified, all coefficients correctly
reproduce their deep-water limit at k0h!1.

A. Mean flow in time-like equations

At main order in steepness, Eqs. (3) and (33) imply

@jU j2

@t
¼ �cg

@jU j2

@x
: (35)

Thus, /01 and jU j2 do not depend on x and t separately, but only
through their combination ðx � cg tÞ, so that at the leading order, the
Fourier transform in space, F x , can be replaced by the Fourier trans-
form in time, F t . From Eq. (5), in the deep-water limit, it is possible to
simply exchange the derivative with respect to space with that with
respect to time and vice versa, since the Hilbert transform of the

derivative is the derivative of the Hilbert transform, i.e., these two lin-
ear operators commute. As such,

@/0

@t
¼ x0

2
Ht

@jU j2

@t

� �
: (36)

The time-like Dysthe equation is given by the deep-water limit of Eq.
(34) and reads, using the above-mentioned expression for the mean
flow term,28,45–48

i
@U
@x
� k0

x2
0

@2U
@t2
� k30jU j

2U

¼ 2i
k30
x0

4jU j2 @U
@t
þ U2 @U

�

@t
þ iUHt

@jU j2

@t

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Mean Flow

0
B@

1
CA; (37)

where a3 ! 0, since k / x2, and b̂21 ! 3
2x0k0; b̂22 ! 1

4x0k0;
b21 ! 8k30=x0, and b22 ! 2k30=x0.

For the last term in Eq. (34), the Sed03 expression, as in Eq. (3),
can be written in terms of the time derivative, using Eq. (33),

@/0

@t
¼ �cg

x0

2

k0lg

r�
jUj2 � i

4x0r
�

~q40S U
@U�

@t
� U�

@U
@t

� �
: (38)

However, this expression goes to zero in the deep-water limit, and
thus, it does not converge to the Dysthe mean flow given in Eq. (36).

Replacing Eq. (33) in the Laplace equation and the surface bound-
ary conditions, and repeating the same steps of Sec. IIC, we finally get
the following expressions for the derivative in time of /0 for cases 1 and
2, respectively, to be inserted in the evolution equation [Eq. (34)]:

@/0

@t
¼ DF�1t

i
tanhðxh=cgÞ

F t
@jUj2

@t

� �( )
; for case 1; (39)

@/0

@t
¼D0F�1t

i
tanhðxh=cgÞ 1�cgx=ðgtanhðxh=cgÞÞ

	 
F t
@jU j2

@t

� �( )
;

for case2: (40)

B. Numerical comparisons

We now compare the expressions for @/0=@t listed in Table II
with the sub-harmonic velocity potential /20 at second order in

FIG. 5. Dispersion coefficients (for x0 ¼ 1 Hz). Zero crossings are marked on the
horizontal axis.

FIG. 6. Nonlinear coefficients (a) in Eq.
(32), and (b) in Eq. (34), normalized with
respect to their deep-water values [in
Dysthe equation, Eq. (37)]. Zero crossings
are marked in the insets.
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steepness and its time derivative calculated using the Dalzell analytical
method in Refs. 50 and 51.

We use the same parameters as in Sec. IID, starting in this case
by a Gaussian (amplitude) spectrum SðxÞ peaked at x0 ¼ 1 Hz.

The results for N¼ 30 waves focusing at t¼ 0 are shown in
Fig. 7. We see that the second-order expression in Sed03 reproduces
well the waveform only for k0h � 1, showing discrepancies with
respect to Dalzell’s solution at k0h ¼ 2 and not converging to Dysthe’s
solution in deep water. As for the space-like form, the expressions for
/0t given by case 1 [Eq. (39)] and case 2 [Eq. (40)] have a similar
behavior at all depths, providing in general approximations that are as
accurate as the Dalzell solution in intermediate waters, and as the
Dysthe expression at deep waters. As before, the third-order expres-
sions provided by Eqs. (38) and (C11) are different and do not corre-
spond to the other models. Figure 8 shows the deviation operator with
respect to the Dysthe expression, defined similarly to the spatial

counterpart (see Sec. IID) as DDysthe ¼ N�1
Ð
ð/0t � /Dysthe

0t Þ2 dt, and
to the Dalzell one, DDalzell ¼ N�1

Ð
ð/0t � /Dalzell

0t Þ2 dt as a function of
the non-dimensional water depth k0h. The integral is now calculated
over T ¼ 80T0, and the normalization coefficient is N ¼ ðx0k0DWÞ4T ,
with k0DW calculated at deep water. As for the space-like case, it can
be seen that the expression given by case 2 [Eq. (40)] is accurate at
second order at all depths as the second-order Dalzell solution,
while the one given by case 1 [Eq. (39)] is the only expression that
converges to the Dysthe term in the deep-water limit and is equiva-
lent to case 2 for k0h < 3.

IV. CONCLUSION

During the evolution of surface gravity waves, fluid particles
experience Stokes drift along the propagation direction of the waves
and a return flow in vertical and horizontal directions, which closes

FIG. 7. Mean flow /0t for N¼ 30 waves
focusing at t¼ 0 described by the expres-
sions listed in Table II, for different values
of k0h.
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the water-mass transport. Both processes give rise to a mean flow at
the surface that needs to be accounted for in order to accurately pre-
dict the transport of pollutants6–8 (such as oil and microplastics) and,
more in general, the impact of waves evolution at small scale on the
ocean circulation at large scale.9–12 We have derived nonlocal (viz.
non-instantaneous) expressions of the mean flow [Eqs. (25) and (39)]
that correctly converge to the deep-water limit at third order in steep-
ness, while being equivalent to second-order formulations in interme-
diate waters. We have included these expressions in an envelope
evolution equation at fourth order in steepness in both, space-like [Eq.
(2)] and time-like [Eq. (34)] formulations. We emphasize that the
time-like form is relevant to study the evolution of unidirectional wave
groups in space, thus for modeling experiments in water wave flumes at
high accuracy in arbitrary depths. Future work will be focusing on the
experimental validation of our results in different water depth regimes.
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APPENDIX A: DISPERSION AND NONLINEAR
COEFFICIENTS

The dispersion coefficients are

â ¼ 1
2
x00ðk0Þ ¼ a c3g; (A1)

a ¼ � 1
2
k00ðx0Þ ¼ �

1
2x0cg

1� gh
c2g
ð1� jrÞð1� r2Þ

" #
; (A2)

â3 ¼
1
6
x000ðk0Þ ¼

x0

48k30r
3rþ jð1� r2Þ �3þ j

��


 � 3
r
þ 3j

r2
þ 13j� 15jð1� r2Þ � 9r

� ���
;

(A3)

a3 ¼ �
1
6
k000ðx0Þ ¼

â3

c4g
� 2a2cg ; (A4)

k000ðx0Þ ¼ �
1
c4g

@2cg
@k2
þ 3
c5g

@cg
@k

� �2

; (A5)

â4 �
1
24
@4x
@k4
¼ x0

384k40
�15þ 12j2 þ 46j4þ4jð3� 5j2Þcoth j
	

þ 2j2ð3þ 10j2Þcoth2jþ 12j3coth3j

� 15j4coth4jþ jrð�12þ 68j2

þ 3jrð�6� 52j2 þ 5jrð�4þ 7jrÞÞÞ


; (A6)

FIG. 8. Deviation operator with respect to
the Dysthe expression (a) and to the
Dalzell one (b) for the derivative in time
/0t , as defined in the main text, for the dif-
ferent cases listed in Table II.
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a4 �
1
24
@4k
@x4
¼ � 1

24c5g

@3cg
@k3
þ 5
12c6g

@2cg
@k2

@cg
@k
� 5
8c7g

@cg
@k

� �3

¼ � â4

c5g
þ 5
c6g

â3â �
5
c7g

â3; (A7)

where j ¼ k0h; r ¼ tanh j, and cg is the group velocity,

cg �
@x
@k
¼ g

2x0
rþ jð1� r2Þ
	 


: (A8)

The third-order nonlinear coefficients are

b̂D ¼ �
x0k20
16r4

ð2r6 � 13r4 þ 12r2 � 9Þ; (A9)

b̂ ¼ b cg ¼ b̂D þ x0k
2
0

l2
g

8r2�
¼ b̂D �

k0lg

4rh
D; (A10)

bD ¼
b̂D

cg
; (A11)

b ¼ x0k20
16r4cg

9� 10r2 þ 9r4 �
2r2c2g
gh� c2g

(


 4
c2p
c2g
þ 4

cp
cg
ð1� r2Þ þ gh

c2g
ð1� r2Þ2

" #)
; (A12)

where, interestingly, the coefficients in the curly brackets can be
expressed in terms of j, cg=cp ¼ ðrþ jð1� r2ÞÞ=ð2rÞ; gh=c2g
¼ ðc2p=c2gÞj=r; 2r2c2g=ðgh� c2gÞ ¼ 2rðc2g=c2pÞ=ðj=r� c2g=c

2
pÞ and

D ¼ �hx0

2

k0lg

r�
¼ x0

2
j
2r

2þ ð1� r2Þcg=cp
j� rc2g=c

2
p

¼ D0

1� c2g=ðghÞ
;

(A13)

D0 ¼ x0

2r
ð1þ CFDÞ; (A14)

lg ¼
2r
x0
ð2x� kcgðr2 � 1ÞÞ ¼ ðr2 � 1Þ2j� rðr2 � 5Þ

¼ 4rð1þ CFDÞ; (A15)

� ¼ 4k0r
g
ðc2g � ghÞ ¼ ðrþ 1Þ2j� r

	 

ðr� 1Þ2j� r
	 


; (A16)

CFD ¼
x0cg

g sinh ð2jÞ : (A17)

The higher-order nonlinear coefficients are

b21 ¼
b̂21

c2g
� 4abcg; (A18)

b22 ¼
b̂22

c2g
� 2abcg; (A19)

b̂21 ¼ x0k0Q41S; (A20)

b̂22 ¼ x0k0Q42S; (A21)

B21 ¼ x0k0 ~Q41=c
2
g � 4abDcg ; (A22)

B22 ¼ x0k0 ~Q42=c
2
g � 2abDcg; (A23)

where Q41S; Q42S; ~Q41; ~Q42 are given in Appendix B.

APPENDIX B: NOTATION USED IN SEDLETSKY (2003)
(SED03)

The main coefficients in Sedletsky’s notation are39

Q41 ¼ ~Q41 �
lg

�
~q40; (B1)

Q42 ¼ ~Q42 þ
lg

�
~q40; (B2)

~q40 ¼
1

32r3�
ðr2 � 1Þ5j4 � 4rð2r4 þ 9r2 þ 5Þðr2 � 1Þ2j3
	

þ 2r2ð9r4 þ 16r2 � 9Þðr2 � 1Þj2

� 4r3ð4r4 � 9r2 � 7Þjþ 5r4ðr2 � 5Þ


; (B3)

~Q41 ¼ ~q41 ¼
1

16r5�
ð2r6 � 11r4 � 10r2 þ 27Þðr2 � 1Þ3j3
	

� rð6r8 � 21r6 þ 9r4 � 43r2 þ 81Þðr2 � 1Þj2

þ r2ð6r8 � 15r6 � 77r4 þ 71r2 � 81Þj
� r3ðr2 þ 1Þð2r4 � 7r2 � 27Þ



; (B4)

~q42 ¼
1

32r5�
ð4r6 � 13r4 þ 10r2 � 9Þðr2 � 1Þ3j3
	

� rð12r8 � 51r6 þ 17r4 � r2 � 9Þðr2 � 1Þj2

þ r2ð12r8 � 67r6 þ 33r4 � r2 � 9Þj
� r3ð4r6 � 29r4 þ 42r2 � 9Þ



; (B5)

q3 ¼ �
b̂

x0k20
; (B6)

~Q42 ¼ ~q42 � 2
cg
cp
q3: (B7)

The final expressions for Q41 and Q42 are given in Eqs. (67) and
(68) in Ref. 39 and reported here for completeness,

Q41 ¼
1

32r5�2
ð3r6 � 20r4 � 21r2 þ 54Þðr2 � 1Þ5j5
�

�rð11r8 � 99r6 � 61r4 þ 7r2 þ 270Þðr2 � 1Þ3j4

þ 2r2ðr2 � 1Þð7r10 � 58r8 þ 38r6 þ 52r4 � 181r2 þ 270Þj3

� 2r3ð3r10 þ 18r8 � 146r6 � 172r4 þ 183r2 � 270Þj2

�r4ðr8 � 109r6 þ 517r4 þ 217r2 þ 270Þj
þr5ðr6 � 40r4 þ 193r2 þ 54Þ



; (B8)

Q42 ¼
1

32r5�2
�ð3r6 þ 7r4 � 11r2 þ 9Þðr2 � 1Þ5j5
�

þrð11r8 � 48r6 þ 66r4 þ 8r2 þ 27Þðr2 � 1Þ3j4

� 2r2ðr2 � 1Þð7r10 � 79r8 þ 282r6 � 154r4 � r2 þ 9Þj3

þ 2r3ð3r10 � 63r8 þ 314r6 � 218r4 þ 19r2 þ 9Þj2

þr4ðr8 þ 20r6 � 158r4 � 28r2 � 27Þj
�r5ðr6 � 7r4 þ 7r2 � 9Þ



: (B9)

We have verified that they are equivalent to the expressions
obtained using Eqs. (B1) and (B2).

From Eqs. (B8) and (B9), in the deep-water limit j!
1; r! 1; � ! 1 �4j; lg ! 4; Q41 ! 768=ð32 � 16Þ ¼ 3=2, and
Q42 ! 128=ð32 � 16Þ ¼ 1=4 recovering the Dysthe result for such
terms.
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As suggested in Ref. 41, the above-mentioned expressions can
be modified to agree with the results presented in Ref. 40. However,
we have verified that the (small) modification suggested in Ref. 41
missed a factor 2, the right one being the following:

~q40S ¼ ~q40 þ
D
2
�

lg
; (B10)

Q41S ¼ Q41 �
D
2
; (B11)

Q42S ¼ Q42 þ
D
2
; (B12)

where the term D is defined in Ref. 41,

D ¼ � r2 � 1
16r3�

ðr2 � 1Þ3ð3r2 þ 1Þj3
	

�rðr2 � 1Þð5r4 � 18r2 � 3Þj2

þr2ðr2 � 1Þðr2 � 9Þjþ r3ðr2 � 5Þ


: (B13)

In the deep-water limit, j!1; Q41S ! 3=2, and Q42S ! 1=4,
since D! 0, thus recovering the Dysthe result for such terms.

Note, however, that the final equations that include the mean
flow [namely, Eqs. (2) and (34)] are not affected by such ambiguity,
since their high-order nonlinear coefficients only depend on ~Q41

and ~Q42.

APPENDIX C: NOTATION USED IN SLUNYAEV (2005)
(SLU05)

One can use the notation in Ref. 40, where b̂21 ¼ x0k0Q41S

and b̂22 ¼ x0k0Q42S, and Q41S ¼ ðh3x0Þ~a21=ðj3r2Þ, Q42S

¼ ðh3x0Þ~a22=ðj3r2Þ, with ~a21 ¼ ~q21 � ~q12c2 and ~a22 ¼ ~q22
þ~q12c2; ~q21 ¼ P21 þ sb1c1, ~q22 ¼ P22 � sb1c1. Here, b1 ¼ �â and
the other coefficients are given by57

h3x0P21 ¼ j2 ðr2 � 1Þð�4r4 þ 3r2 þ 1Þ
8r2

�

þj
4r4 � 9r2 þ 3

4r
þ�4r

2 þ 19
8

�
h3x0c1

þj2 �r4 þ 3
2ðr2 þ 1Þhx0v2

þ j2�3r6 þ 7r4 � 9r2 � 3
4rðr2 þ 1Þ þ 3j

r4 � 5
4ðr2 þ 1Þ

 !
h2x0v1

þj4 ðr2 � 1Þð11r4 � 12r2 � 3Þ
16r

þ j3�11r4 þ 40r2 � 9
16

;

(C1)

h3x0P22 ¼ �j2 ðr2 � 1Þ2

8
þ j

r4 � 5r2 þ 2
4r

þ�r2 þ 8
8

� �
h3x0c1

þ j2 ðr2 � 1Þðr4 þ 3Þ
4rðr2 þ 1Þ � j

r4 þ 3
4ðr2 þ 1Þ

 !
h2x0v1

þj4 ðr2 � 1Þð�3r4 � 8r2 þ 3Þ
32r

þ 3j3 r4 � 1
32

; (C2)

h2x0s ¼ j2 r2 � 1
2

; (C3)

V2
d ¼ gh� c2g ¼ �

g�
4k0r

; (C4)

h3x0c1 ¼ h3x0
k20cgðr2 � 1Þ � 2x0k0

4V2
d

¼
j3rlg

2�
; (C5)

c2 ¼
1
V2
d

2cgc1b1 þ k20b1
ðr2 � 1Þ

4
þ

x2 � k20c
2
gðr2 � 1Þ

4x0

" #
; (C6)

~q12 ¼
2x0k0 � k20cgðr2 � 1Þ

2x0
¼

klg

4r
; (C7)

h2x0v1 ¼ 3j2 r4 � 1
8r2

; (C8)

hx0v2 ¼ j
�r3 þ 3

r
þ 1

� �
h2x0v1

j
þ 3j2ðr2 � 1Þð3r2 þ 1Þ

16r

þ 9j
1� r4

16r2
: (C9)

Using the same notation as in Sed03 for the reconstruction at lead-
ing order of the surface elevation, gðv; tÞ ¼ 1

2 ½Uðx; tÞ exp ðiðk0v
�x0tÞÞ þ c: c:�, the mean flow term is written as [see Eqs. (32),
(43), and (45) in Ref. 40]

@/0

@x
¼ x0

2

k0lg

r�
jU j2 � i

c2p
r2

c2 þ
b1c1
cg

 !
U
@U�

@x
� U�

@U
@x

� �
:

(C10)

Note that while the first term is equal to the corresponding term in
Eq. (3) from Sedletsky’s derivation, the second one has a different
coefficient, since 4x0r~q40=� 6¼ c2pr

2ðc2 þ b1c1=cgÞ=r2 [even if we
take into account the correction ~q40S in Eq. (B10)].

Using Eq. (33), the derivative in time of /0 is

@/0

@t
¼ �cg

x0

2

k0lg

r�
jU j2 � i

c2p
r2

c2 þ
b1c1
cg

 !
U
@U�

@t
� U�

@U
@t

� �
:

(C11)

APPENDIX D: EXAMPLE OF SEA STATE REALIZATION

Following the definitions in Ref. 51, we consider a Gaussian
amplitude spectrum, denoted by S(k), given by

SðkÞ ¼ exp �ðk� k0Þ2

2k2w

 !
; (D1)

for k> 0, where k0 ¼ 0:0277 m�1, and kw ¼ 0:27 k0 is the dimen-
sional bandwidth. Other spectra, like JONSWAP or
Pierson–Moskowitz, can also be used. This yields the following sur-
face elevation at first order in steepness:

g1ðx; tÞ ¼
Ap

2

ð1
0
SðkÞei kðx�xf Þ�xðt�tf Þ½ �Þdkð1

0
SðkÞdk

þ c:c:; (D2)

where Ap, xf, and tf are the amplitude, position, and time for the
group at linear focus, with steepness given by e ¼ Apk0 ¼ 0:3. An
example of sea state realization at second order in steepness,
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obtained using the Dalzell development,50 is shown in Fig. 9 for the
case of a focused wave group at xf¼ 0, tf¼ 0 for k0h ¼ 1:5. The
power spectrum can be obtained as58 PðkÞ ¼ jĝj2=ð2dkÞ, where ĝ is
the Fourier transform in space of the surface elevation, from which
the significant wave height Hs can be obtained as Hs ¼ 4

ffiffiffiffiffiffi
m0
p ¼ 5:2

m, m0 being equal to the area under the power spectrum curve.
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