Rhodium(III) polypyridine complexes and their cyclometalated analogues display photophysical properties of considerable interest, both from a fundamental viewpoint and in terms of the possible applications. In mononuclear polypyridine complexes, the photophysics and photochemistry are determined by the interplay between LC and MC excited states, with relative energies depending critically on the metal coordination environment. In cyclometalated complexes, the covalent character of the C – Rh bonds makes the lowest excited state classification less clear cut, with strong mixing of LC, MLCT, and LLCT character being usually observed. In redox reactions, Rh(III) polypyridine units can behave as good electron acceptors and strong photo-oxidants. These properties are exploited in polynuclear complexes and supramolecular systems containing these units. In particular, Ru(II)-Rh(III) dyads have been actively investigated for the study of photoinduced electron transfer, with specific interest in driving force, distance, and bridging ligand effects. Among systems of higher nuclearity undergoing photoinduced electron transfer, of particular interest are polynuclear complexes where rhodium dihalo polypyridine units, thanks to their Rh(III)/Rh(I) redox behavior, can act as twoelectron storage components. A large amount of work has been devoted to the use of Rh(III) polypyridine complexes as intercalators for DNA. In this role, they have proven to be very versatile, being used for direct strand photocleavage marking the site of intercalation, to induce long-distance photochemical damage or dimer repair, or to act as electron acceptors in long-range electron transfer processes.
Photochemistry and Photophysics of Coordination Compounds: Rhodium
INDELLI, Maria TeresaPrimo
;CHIORBOLI, ClaudioSecondo
;SCANDOLA, Franco
Ultimo
2007
Abstract
Rhodium(III) polypyridine complexes and their cyclometalated analogues display photophysical properties of considerable interest, both from a fundamental viewpoint and in terms of the possible applications. In mononuclear polypyridine complexes, the photophysics and photochemistry are determined by the interplay between LC and MC excited states, with relative energies depending critically on the metal coordination environment. In cyclometalated complexes, the covalent character of the C – Rh bonds makes the lowest excited state classification less clear cut, with strong mixing of LC, MLCT, and LLCT character being usually observed. In redox reactions, Rh(III) polypyridine units can behave as good electron acceptors and strong photo-oxidants. These properties are exploited in polynuclear complexes and supramolecular systems containing these units. In particular, Ru(II)-Rh(III) dyads have been actively investigated for the study of photoinduced electron transfer, with specific interest in driving force, distance, and bridging ligand effects. Among systems of higher nuclearity undergoing photoinduced electron transfer, of particular interest are polynuclear complexes where rhodium dihalo polypyridine units, thanks to their Rh(III)/Rh(I) redox behavior, can act as twoelectron storage components. A large amount of work has been devoted to the use of Rh(III) polypyridine complexes as intercalators for DNA. In this role, they have proven to be very versatile, being used for direct strand photocleavage marking the site of intercalation, to induce long-distance photochemical damage or dimer repair, or to act as electron acceptors in long-range electron transfer processes.File | Dimensione | Formato | |
---|---|---|---|
Topics.PDF
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
882.36 kB
Formato
Adobe PDF
|
882.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.