In 1975 P.D.T.A. Elliott proved an interesting theorem on the existence of mean value for multiplicative functions. Elliott's paper is fairly complicated and the proofs require complex analysis, the dual of Turàn- Kubilius inequality and Halasz's method. In this paper we give an elementary proof of the first half of Elliott's theorem which avoids any use of complex analysis or Turàn-Kubilius type inequality and, instead, is based on computing the Ramanujan coefficients of the multiplicative function involved.

On Elliott's theorem on multiplicative functions

CODECA', Paolo;
1992

Abstract

In 1975 P.D.T.A. Elliott proved an interesting theorem on the existence of mean value for multiplicative functions. Elliott's paper is fairly complicated and the proofs require complex analysis, the dual of Turàn- Kubilius inequality and Halasz's method. In this paper we give an elementary proof of the first half of Elliott's theorem which avoids any use of complex analysis or Turàn-Kubilius type inequality and, instead, is based on computing the Ramanujan coefficients of the multiplicative function involved.
1992
multiplicative functions; Elliott's theorem
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/523010
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact