This PhD thesis is devoted to the investigation of interactions between water and hydrophobic microporous materials through Molecular Dynamics (MD) simulations. The study of the properties of water confined in microscopic cavities and the dynamics of the liquid intrusion at a microscopic scale is driven by the promise of many interesting technological applications, including: a novel technology for developing eco-friendly energy storage devices in the form of mechanical batteries, as well as energy dissipation systems and, in particular, shock absorbers for the automotive market, and many more. Molecular Dynamics simulations allowed us not only to investigate the behavior of water under high confinement conditions but also the dynamics in the intrusion/extrusion process under different thermodynamic conditions. In addition, we shed light on the role of the complex morphology/topology of the microporous solids considered, which in the present study are hydrophobic Metal-Organic Frameworks. Anticipating some results, through atomistic simulations performed on the Cu2(tebpz) MOF we showed an unprecedented critical temperature reduction of confined water of 200-250 K with respect to its bulk value, which is further confirmed also by experimental analyses. In addition, in-silico and liquid porosimetry experiments revealed a phenomenology at odds with consolidated physical laws, namely the Young-Laplace law, and intuition. Remarkably, an analogous phenomenology is observed also with ZIF-8. Simulations confirm that the theoretical framework developed for Cu2(tebpz) explains ZIF-8 behaviors as well, suggesting a possible generality of these physical phenomena. Free-energy Molecular Dynamics calculations, performed by advanced MD techniques, allowed us to explain how the hydrophobicity of complex microporous material, like ZIF-8, is driven not only by its chemical composition but also by its surface roughness/texture, providing a hint to tune their hydrophobicity. Finally, Molecular Dynamics simulations, also supported by experimental results, revealed the temperature dependence of the heat associated with the water intrusion process and the influence that crystallite size can have on it.

Questa tesi di dottorato è dedicata all'indagine delle interazioni tra acqua e materiali microporosi idrofobici attraverso simulazioni di Dinamica Molecolare (MD). Lo studio delle proprietà dell'acqua confinata in cavità microscopiche e della dinamica dell'intrusione del liquido a scala microscopica è guidato dalla promessa di molte applicazioni tecnologiche interessanti, tra cui: una nuova tecnologia per lo sviluppo di dispositivi per l'accumulo di energia ecologici sotto forma di batterie meccaniche, nonché sistemi di dissipazione dell'energia e, in particolare, ammortizzatori per il mercato automobilistico, e molte altre. Le simulazioni di Dinamica Molecolare ci hanno permesso non solo di indagare il comportamento dell'acqua sotto condizioni di confinamento elevato, ma anche la dinamica nel processo di intrusione/estrusione sotto diverse condizioni termodinamiche. Inoltre, abbiamo fatto luce sul ruolo della morfologia/topologia complessa dei solidi microporosi considerati, che nel presente studio sono Metal-Organic Frameworks idrofobici. Anticipando alcuni risultati, attraverso simulazioni atomistiche eseguite sul MOF Cu2(tebpz) abbiamo mostrato una riduzione senza precedenti della temperatura critica dell'acqua confinata di 200-250 K rispetto al suo valore bulk, confermata anche da analisi sperimentali. Inoltre, esperimenti in-silico e di porosimetria liquida hanno rivelato una fenomenologia in contrasto con le leggi fisiche consolidate, ovvero la legge di Young-Laplace. Una fenomenologia analoga è ststat osservata anche con ZIF-8. Le simulazioni confermano che il quadro teorico sviluppato per Cu2(tebpz) spiega anche i comportamenti di ZIF-8, suggerendo una possibile generalità di questi fenomeni fisici. I calcoli di energia libera tramite Dinamica Molecolare, eseguiti con tecniche avanzate, ci hanno permesso di spiegare come l'idrofobicità di materiali microporosi complessi, come ZIF-8, dipenda non solo dalla sua composizione chimica, ma anche dalla sua rugosità/texture superficiale, fornendo un suggerimento su come regolarne l'idrofobicità. Infine, le simulazioni di Dinamica Molecolare, supportate anche da risultati sperimentali, hanno rivelato la dipendenza della temperatura del calore associato al processo di intrusione dell'acqua e l'influenza che la dimensione dei cristalliti può avere su di essa.

Thermodynamics of water confined within hydrophobic Metal-Organic Frameworks and the dynamics of intrusion/extrusion process

MERCHIORI, Sebastiano
2025

Abstract

This PhD thesis is devoted to the investigation of interactions between water and hydrophobic microporous materials through Molecular Dynamics (MD) simulations. The study of the properties of water confined in microscopic cavities and the dynamics of the liquid intrusion at a microscopic scale is driven by the promise of many interesting technological applications, including: a novel technology for developing eco-friendly energy storage devices in the form of mechanical batteries, as well as energy dissipation systems and, in particular, shock absorbers for the automotive market, and many more. Molecular Dynamics simulations allowed us not only to investigate the behavior of water under high confinement conditions but also the dynamics in the intrusion/extrusion process under different thermodynamic conditions. In addition, we shed light on the role of the complex morphology/topology of the microporous solids considered, which in the present study are hydrophobic Metal-Organic Frameworks. Anticipating some results, through atomistic simulations performed on the Cu2(tebpz) MOF we showed an unprecedented critical temperature reduction of confined water of 200-250 K with respect to its bulk value, which is further confirmed also by experimental analyses. In addition, in-silico and liquid porosimetry experiments revealed a phenomenology at odds with consolidated physical laws, namely the Young-Laplace law, and intuition. Remarkably, an analogous phenomenology is observed also with ZIF-8. Simulations confirm that the theoretical framework developed for Cu2(tebpz) explains ZIF-8 behaviors as well, suggesting a possible generality of these physical phenomena. Free-energy Molecular Dynamics calculations, performed by advanced MD techniques, allowed us to explain how the hydrophobicity of complex microporous material, like ZIF-8, is driven not only by its chemical composition but also by its surface roughness/texture, providing a hint to tune their hydrophobicity. Finally, Molecular Dynamics simulations, also supported by experimental results, revealed the temperature dependence of the heat associated with the water intrusion process and the influence that crystallite size can have on it.
LE DONNE, ANDREA
MELONI, Simone
MASSI, Alessandro
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_SebastianoMerchiori_compressed_PDFA.pdf

accesso aperto

Descrizione: PhD_Tesi_SebastianoMerchiori
Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 6.91 MB
Formato Adobe PDF
6.91 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2586216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact