This thesis examines the development of advanced lithium-air (Li–O2) battery systems as an alternative to conventional lithium-ion batteries. It focuses on the investigation of innovative anode and cathode materials, as well as optimized electrolytes, to address the growing energy demands of modern society while fostering sustainability. Li–O2 batteries hold significant promise due to their high theoretical energy density and environmental advantages. However, their practical application is constrained by challenges such as anode instability, electrolyte degradation, and limited cycle life. This work seeks to address these obstacles through the synthesis of novel materials and the optimization of battery components to achieve enhanced performance and durability. The study introduces a nanostructured Sn@C alloying anode as a replacement for lithium metal, addressing issues related to dendrite formation, which pose safety risks and limit cycling life. The Sn@C composite, consisting of tin nanoparticles embedded within a carbon matrix, exhibits excellent capacity retention, high tap density, and a cycle life of up to 300 cycles. Electrochemical analysis demonstrates reduced polarization and a charge-discharge efficiency nearing 100%, positioning it as a promising candidate for next-generation batteries. When combined with a high-voltage spinel cathode, LiNi0.35Cu0.1Mn1.45 Al0.1O₄, the resulting Li-ion full cell achieves an average working voltage of 4.3 V and an energy density approaching 500 Wh/kg, with practical outputs of 165 Wh/kg. A comprehensive evaluation of carbon-based gas diffusion layers (GDLs) was conducted to improve the performance of Li–O2 batteries. GDLs with varying morphology, porosity, and structural properties were characterized and tested to assess their influence on ion diffusion kinetics and electrode stability. Then GDL 36BB was subsequently coated with a composite of Multi Walled Carbon Nanotubes (MWCNTs) and Few Layer Graphene (FLG), resulting in a cell that demonstrated a lifespan exceeding 100 cycles at a capacity of 500 mAh g-1. The research subsequently focuses on improving cathode materials composed of MWCNTs and Few- FLG in various ratios, further enhanced with nanometric gold catalysts. This configuration markedly improves the reversibility and kinetics of oxygen electrochemical reactions, enabling stable cycling and increased energy output. The most effective cathodic material, comprising a 50:50 ratio of MWCNTs and FLG, with addition of 8% Au catalyst, achieves a cell capacity of 954 mAh g-1, sustained over 70 cycles with 100% efficiency. Electrolytes based on PEGDME 250 with LiTFSI and LiNO3 salts have been developed to achieve greener and more stable electrolyte solutions. These formulations exhibit excellent thermal stability, ranging from -50 °C to 200 °C, a broad electrochemical window, high ionic conductivity, an appropriate transference number (~0.6 for both electrolytes), and facilitate the formation of a robust solid electrolyte interphase (SEI). Finally, a proof-of-concept Li-ion/O₂ cell was developed, incorporating the Sn@C anode, the MWCNT/FLG 50:50 cathode, and PEGDME 250-based electrolytes. Preliminary results demonstrated that the cell with a LiNO3-free electrolyte achieved a capacity of 350 mAh g-1 while the cell containing LiNO3 exhibited a capacity of 275 mAh g-1, both cells with a lifecycle of 40 cycles. This comprehensive study provides critical insights into the development of high-performance and environmentally friendly electrode materials and electrolytes for lithium-air batteries, contributing to the advancement of electrochemical energy storage systems. The innovations presented herein represent a promising pathway toward cost-effective, sustainable, and scalable battery solutions, enabling greater integration of renewable energy and supporting the growth of electric mobility.
Questa tesi analizza lo sviluppo di batterie litio-aria (Li–O2) come alternativa alle tradizionali batterie agli ioni di litio. L'attenzione è focalizzata sull'innovazione dei materiali per anodi e catodi, nonché sull'ottimizzazione degli elettroliti, al fine di soddisfare le crescenti esigenze energetiche della società contemporanea e promuovere la sostenibilità. Le batterie Li–O2 offrono un’elevata densità energetica teorica e potenziali benefici ambientali; tuttavia, la loro applicazione pratica è ostacolata dall’instabilità dell’anodo e dell’elettrolita, oltre alla limitata durata del ciclo di vita. Il presente studio affronta queste problematiche mediante la sintesi di nuovi materiali e il perfezionamento dei componenti della batteria, con l’obiettivo di migliorarne le prestazioni e la durabilità. Il lavoro inizia dallo studio di anodo nanostrutturato Sn@C come alternativa al litio metallico, con l’obiettivo di mitigare la formazione di dendriti. Il composito Sn@C, costituito da nanoparticelle di stagno disperse in una matrice di carbonio, si distingue per un’eccellente ritenzione della capacità, un’elevata densità energetica e una vita utile che si estende fino a 300 cicli, con ridotta polarizzazione e un’efficienza coulombica prossima al 100%, confermando il potenziale del materiale come candidato promettente per batterie di nuova generazione. L’accoppiamento con un catodo spinello (LiNi0.35Cu0.1Mn1.45Al0.1O4) consente la realizzazione di una cella agli ioni di litio con una tensione operativa media di 4,3 V e una densità energetica teorica prossima a 500 Wh/kg, con un valore densità energia pratica di 165 Wh/kg. Per migliorare le prestazioni delle batterie Li–O2, è stata condotta un’analisi approfondita dei gas diffusion layer (GDL) a base di carbonio, valutandone la morfologia, la porosità e le proprietà strutturali. Successivamente, il GDL 39BB è stato ricoperto con un composito di nanotubi di carbonio e Few Layer Graphene, ottenendo una cella con una durata superiore a 100 cicli a una capacità di 500 mAh g⁻¹. L’attenzione è stata successivamente rivolta all’ottimizzazione dei materiali catodici, basati su MWCNTs e FLG in diverse proporzioni, con l’aggiunta di un catalizzatore a base di oro nanometrico. Questa configurazione ha consentito un significativo miglioramento della reversibilità e della cinetica delle reazioni elettrochimiche dell’ossigeno, garantendo una maggiore stabilità del sistema e un incremento dell’output energetico. Il materiale catodico più performante, costituito da MWCNTs e FLG in rapporto 50:50, con l’aggiunta dell’8% di Au, ha raggiunto una capacità di 954 mAh g⁻¹, mantenendo un’efficienza coulombica del 100% per oltre 70 cicli. Sono stati inoltre sviluppati elettroliti a base di PEGDME 250, combinato con i sali LiTFSI e LiNO3, con l’obiettivo di ottenere soluzioni elettrolitiche più stabili ed ecosostenibili. Le formulazioni risultanti presentano eccellente stabilità termica, un’ampia finestra elettrochimica, elevata conducibilità ionica e un numero di trasferimento adeguato. Infine, è stata sviluppata, come proof-of-concept, una cella Li-ione/O2 che integra l’anodo Sn@C, il catodo MWCNT/FLG 50:50 e gli elettroliti a base di PEGDME 250.I risultati preliminari evidenziano che la cella con elettrolita privo di LiNO₃ ha raggiunto una capacità specifica di 350 mAh g⁻¹, mentre la cella contenente LiNO3 ha raggiunto una capacità specifica di 275 mAh g⁻¹. Il presente studio fornisce un contributo significativo allo sviluppo di materiali elettrodici ed elettroliti ad alte prestazioni, favorendo il progresso dei sistemi di accumulo elettrochimico. Le innovazioni proposte delineano un percorso promettente verso soluzioni di accumulo energetico più sostenibili, scalabili ed economicamente vantaggiose, agevolando l’integrazione delle fonti rinnovabili e il progresso della mobilità elettrica.
New generation of lithium-air energy storage systems
LEVCHENKO, STANISLAV
2025
Abstract
This thesis examines the development of advanced lithium-air (Li–O2) battery systems as an alternative to conventional lithium-ion batteries. It focuses on the investigation of innovative anode and cathode materials, as well as optimized electrolytes, to address the growing energy demands of modern society while fostering sustainability. Li–O2 batteries hold significant promise due to their high theoretical energy density and environmental advantages. However, their practical application is constrained by challenges such as anode instability, electrolyte degradation, and limited cycle life. This work seeks to address these obstacles through the synthesis of novel materials and the optimization of battery components to achieve enhanced performance and durability. The study introduces a nanostructured Sn@C alloying anode as a replacement for lithium metal, addressing issues related to dendrite formation, which pose safety risks and limit cycling life. The Sn@C composite, consisting of tin nanoparticles embedded within a carbon matrix, exhibits excellent capacity retention, high tap density, and a cycle life of up to 300 cycles. Electrochemical analysis demonstrates reduced polarization and a charge-discharge efficiency nearing 100%, positioning it as a promising candidate for next-generation batteries. When combined with a high-voltage spinel cathode, LiNi0.35Cu0.1Mn1.45 Al0.1O₄, the resulting Li-ion full cell achieves an average working voltage of 4.3 V and an energy density approaching 500 Wh/kg, with practical outputs of 165 Wh/kg. A comprehensive evaluation of carbon-based gas diffusion layers (GDLs) was conducted to improve the performance of Li–O2 batteries. GDLs with varying morphology, porosity, and structural properties were characterized and tested to assess their influence on ion diffusion kinetics and electrode stability. Then GDL 36BB was subsequently coated with a composite of Multi Walled Carbon Nanotubes (MWCNTs) and Few Layer Graphene (FLG), resulting in a cell that demonstrated a lifespan exceeding 100 cycles at a capacity of 500 mAh g-1. The research subsequently focuses on improving cathode materials composed of MWCNTs and Few- FLG in various ratios, further enhanced with nanometric gold catalysts. This configuration markedly improves the reversibility and kinetics of oxygen electrochemical reactions, enabling stable cycling and increased energy output. The most effective cathodic material, comprising a 50:50 ratio of MWCNTs and FLG, with addition of 8% Au catalyst, achieves a cell capacity of 954 mAh g-1, sustained over 70 cycles with 100% efficiency. Electrolytes based on PEGDME 250 with LiTFSI and LiNO3 salts have been developed to achieve greener and more stable electrolyte solutions. These formulations exhibit excellent thermal stability, ranging from -50 °C to 200 °C, a broad electrochemical window, high ionic conductivity, an appropriate transference number (~0.6 for both electrolytes), and facilitate the formation of a robust solid electrolyte interphase (SEI). Finally, a proof-of-concept Li-ion/O₂ cell was developed, incorporating the Sn@C anode, the MWCNT/FLG 50:50 cathode, and PEGDME 250-based electrolytes. Preliminary results demonstrated that the cell with a LiNO3-free electrolyte achieved a capacity of 350 mAh g-1 while the cell containing LiNO3 exhibited a capacity of 275 mAh g-1, both cells with a lifecycle of 40 cycles. This comprehensive study provides critical insights into the development of high-performance and environmentally friendly electrode materials and electrolytes for lithium-air batteries, contributing to the advancement of electrochemical energy storage systems. The innovations presented herein represent a promising pathway toward cost-effective, sustainable, and scalable battery solutions, enabling greater integration of renewable energy and supporting the growth of electric mobility.| File | Dimensione | Formato | |
|---|---|---|---|
|
Thesis_Stanislav_Levchenko.pdf
embargo fino al 01/04/2026
Descrizione: New generation of lithium-air energy storage systems
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
26.9 MB
Formato
Adobe PDF
|
26.9 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


