Vibration tests are performed to ensure that components can withstand real-world operational environments. The objective is to assess the durability of the device under test (DUT) to prevent failures during operation. Traditionally, vibration tests have been performed using single-axis excitation systems; however, real-world vibrations are generally multi-axial. Consequently, single-axis testing techniques may not replicate the actual stresses experienced by the DUT during operation. The only viable solution to overcome the limitations of single-axis testing is to expose the DUT to multiple simultaneous excitations through a multi-input multi-output (MIMO) vibration test. MIMO testing techniques allow for a closer replication of the operational stresses experienced by the DUT, ultimately enhancing the accuracy of the test. In this context, this testis focuses on advancing MIMO random vibration testing techniques. The objective is to establish more precise, efficient, and realistic testing methodologies. In particular, the thesis addresses three major topics related to MIMO testing. The first part addresses the differences between single-axis and multi-axis testing techniques, aiming to demonstrate the shortcomings of single-axis testing and the benefits of performing multi-axis tests. This part of the thesis examines the differences in fatigue damage and durability outcomes for a component under different testing conditions. An experimental campaign highlights how single-axis testing may underestimate or misrepresent real-world stress environments, leading to less accurate predictions of the DUT’s lifespan. The second part of this thesis focuses on the problem of drive minimization in MIMO testing. Drive minimization is essential in MIMO testing due to the high-power demands of multi-axis setups. This part of the thesis introduces the Minimum PSDs Method (MPM). This novel approach is designed to reduce the energy required by the shakers without altering the response of the DUT. An experimental validation is provided to compare the MPM against existing methods, showing that the MPM allows for lower drive levels while still achieving realistic stress conditions on the DUT. The third topic discussed in this thesis is the definition of test tailored vibration profiles for multi-axis testing. Traditional single-axis fatigue damage spectrum (FDS) techniques often fall short in capturing the full impact of multi-directional forces, as they ignore phase relationships and correlations between different axes of excitation. This chapter introduces the Multi-Input Fatigue Damage Spectrum (MI-FDS), a novel approach that integrates these critical factors, allowing for the synthesis of multi-axis vibration profiles that better match actual service conditions. The MI-FDS method offers a more precise evaluation of the fatigue potential of complex vibration environments, improving the reliability of test results. The thesis concludes with a synthesis of these findings, emphasizing the advantages of MIMO testing over traditional approaches and underscoring the importance of incorporating component-specific dynamic characteristics in the test design.

I test di vibrazione vengono eseguiti per garantire che i componenti possano resistere agli ambienti operativi reali. L'obiettivo è valutare la durabilità del dispositivo in prova (DUT) per prevenire guasti durante il funzionamento. Tradizionalmente, i test di vibrazione sono stati eseguiti utilizzando sistemi di eccitazione monoasse; tuttavia, le vibrazioni reali sono generalmente multiassiali. Di conseguenza, le tecniche di test monoasse potrebbero non replicare accuratamente le sollecitazioni effettivamente subite dal DUT durante il funzionamento. L'unica soluzione praticabile per superare i limiti dei test monoasse è esporre il DUT a eccitazioni multiple simultanee attraverso un test di vibrazione multi-input multi-output (MIMO). Le tecniche di test MIMO consentono una replica più accurata delle sollecitazioni operative reali subite dal DUT, migliorando così la precisione del test. In questo contesto, questa tesi si concentra sullo sviluppo delle tecniche di test di vibrazione casuale MIMO. L'obiettivo è stabilire metodologie di test più precise, efficienti e realistiche. In particolare, la tesi affronta tre argomenti principali legati ai test MIMO. La prima parte analizza le differenze tra le tecniche di test monoasse e multi-asse, con l'obiettivo di dimostrare le carenze del test monoasse e i benefici derivanti dall'esecuzione di test multi-asse. Questa sezione esamina le differenze nei danni da fatica e nei risultati di durabilità per un componente sottoposto a diverse condizioni di test. Una campagna sperimentale evidenzia come il test monoasse possa sottostimare o rappresentare in modo errato le reali sollecitazioni ambientali, portando a previsioni meno accurate della durata del DUT. La seconda parte della tesi si concentra sul problema della minimizzazione della potenza di pilotaggio nei test MIMO. La riduzione della potenza richiesta è essenziale nei test MIMO a causa dell'elevato fabbisogno energetico dei sistemi multi-asse. In questa sezione viene introdotto il Minimum PSD Method (MPM), un approccio innovativo progettato per ridurre l'energia necessaria agli shaker senza alterare la risposta del DUT. Una validazione sperimentale confronta l'MPM con i metodi esistenti, dimostrando che l’MPM consente di ottenere livelli di pilotaggio inferiori pur mantenendo condizioni di stress realistiche sul DUT. Il terzo argomento trattato in questa tesi riguarda la definizione di profili di vibrazione specifici per i test multi-asse. Le tradizionali tecniche di Fatigue Damage Spectrum (FDS) per test monoasse spesso non riescono a cogliere pienamente l'impatto delle forze multidirezionali, poiché ignorano le relazioni di fase e le correlazioni tra i diversi assi di eccitazione. Questo capitolo introduce il Multi-Input Fatigue Damage Spectrum (MI-FDS), un nuovo approccio che integra questi fattori critici, consentendo la sintesi di profili di vibrazione multi-asse che riproducono meglio le reali condizioni di servizio. Il metodo MI-FDS offre una valutazione più precisa del potenziale di fatica degli ambienti di vibrazione complessi, migliorando l'affidabilità dei risultati dei test. La tesi si conclude con una sintesi di questi risultati, evidenziando i vantaggi dei test MIMO rispetto agli approcci tradizionali e sottolineando l'importanza di incorporare le caratteristiche dinamiche specifiche del componente nella progettazione del test.

Analysis of Multi-Axis Random Vibration Control Tests at the Component Level

PRONER, ENRICO
2025

Abstract

Vibration tests are performed to ensure that components can withstand real-world operational environments. The objective is to assess the durability of the device under test (DUT) to prevent failures during operation. Traditionally, vibration tests have been performed using single-axis excitation systems; however, real-world vibrations are generally multi-axial. Consequently, single-axis testing techniques may not replicate the actual stresses experienced by the DUT during operation. The only viable solution to overcome the limitations of single-axis testing is to expose the DUT to multiple simultaneous excitations through a multi-input multi-output (MIMO) vibration test. MIMO testing techniques allow for a closer replication of the operational stresses experienced by the DUT, ultimately enhancing the accuracy of the test. In this context, this testis focuses on advancing MIMO random vibration testing techniques. The objective is to establish more precise, efficient, and realistic testing methodologies. In particular, the thesis addresses three major topics related to MIMO testing. The first part addresses the differences between single-axis and multi-axis testing techniques, aiming to demonstrate the shortcomings of single-axis testing and the benefits of performing multi-axis tests. This part of the thesis examines the differences in fatigue damage and durability outcomes for a component under different testing conditions. An experimental campaign highlights how single-axis testing may underestimate or misrepresent real-world stress environments, leading to less accurate predictions of the DUT’s lifespan. The second part of this thesis focuses on the problem of drive minimization in MIMO testing. Drive minimization is essential in MIMO testing due to the high-power demands of multi-axis setups. This part of the thesis introduces the Minimum PSDs Method (MPM). This novel approach is designed to reduce the energy required by the shakers without altering the response of the DUT. An experimental validation is provided to compare the MPM against existing methods, showing that the MPM allows for lower drive levels while still achieving realistic stress conditions on the DUT. The third topic discussed in this thesis is the definition of test tailored vibration profiles for multi-axis testing. Traditional single-axis fatigue damage spectrum (FDS) techniques often fall short in capturing the full impact of multi-directional forces, as they ignore phase relationships and correlations between different axes of excitation. This chapter introduces the Multi-Input Fatigue Damage Spectrum (MI-FDS), a novel approach that integrates these critical factors, allowing for the synthesis of multi-axis vibration profiles that better match actual service conditions. The MI-FDS method offers a more precise evaluation of the fatigue potential of complex vibration environments, improving the reliability of test results. The thesis concludes with a synthesis of these findings, emphasizing the advantages of MIMO testing over traditional approaches and underscoring the importance of incorporating component-specific dynamic characteristics in the test design.
MUCCHI, Emiliano
TRILLO, Stefano
File in questo prodotto:
File Dimensione Formato  
PhDThesis_Proner.pdf

accesso aperto

Descrizione: Analysis of Multi-Axis Random Vibration Control Tests at the Component Level
Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 19.01 MB
Formato Adobe PDF
19.01 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2585873
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact