Background: The analysis of circulating tumor cells (CTCs) offers a powerful, minimally invasive strategy for tracking cancer progression, understanding tumor heterogeneity, and developing precision oncology. Current CTC isolation methods predominantly rely on epithelial cell adhesion molecule (EpCAM)-based positive selection, which biases the capture of epithelial-like CTCs, while potentially missing those with mesenchymal or intermediate phenotypes. To overcome these limitations, our study proposes an innovative workflow integrating size-based microfluidic enrichment with advanced molecular analyses, enabling a comprehensive characterization of CTCs from diverse solid tumors. Methods: Our custom-built microfluidic device was designed to isolate CTCs based on their size through a stepped structure with a limit-gap dimension of 10μm to maximize tumor cell recovery while minimizing contamination by blood cells. The device was validated using MDA-MB-231 cells, a triple-negative breast cancer (TNBC) cell line, spiked into blood samples from healthy donors. Subsequently, blood samples from TNBC patients were processed in parallel for CTC isolation and peripheral blood mononuclear cell (PBMC) collection. Enriched cancer cells underwent multimodal characterization, including immunofluorescence, qRT-PCR, and single-cell RNA sequencing. Whole-exome sequencing (WES) of PBMCs provides patient-specific genomic data to further refine the molecular characterization of CTCs. Moreover, we performed a comprehensive transcriptomic analysis of 3,302 single-cell RNA sequencing profiles to distinguish the bona-fide CTCs from contaminant blood cells, identifying a panel of novel markers for positive selection of CTCs and negative depletion of blood-borne cells. Results: The optimized microfluidic platform with the Filtration-chip achieved a capture efficiency of 66%, allowing successful enrichment of cancer cells and CTCs with intermediate epithelial- mesenchymal phenotypes, evidenced by concurrent expression of epithelial (KRT, EpCAM) and mesenchymal (VIM, CAV) markers. The absence of mesenchymal markers in commercial antibody- antigen isolation techniques highlights the advantage of size-based microfluidics in capturing the full spectrum of CTC diversity. Single-cell transcriptomic integration of 3302 putative CTC profiles, obtained from databases, identified 872 bona-fide CTCs validated via aneuploidy and cell cycle analyses. Novel subtype-specific markers were discovered, such as CAV1 and AXL for mesenchymal CTCs, enabling refined characterization and purification of CTCs. The Integration of PBMC sequencing data confirmed CD45-negative contaminants in the CTC-enriched fraction, often misidentified as CTCs. Further analysis highlighted markers for effective negative selection of these residual contaminants, like ITGA2B, GNG11 and TMEM40, improving purity in downstream analyses. This dual-selection strategy incorporated pan-CTC markers (e.g., TM4SF1, CD59, TACSTD2, SPINT2) validated across multiple tumor subtypes, providing a framework for detecting rare hybrid phenotypes regardless of their status. Conclusions: This study presents a robust workflow for isolation, purification, and transcriptomic characterization of CTC. Coupling size-based microfluidic enrichment with molecular and bioinformatic analyses demonstrated capturing rare CTC populations across the epithelial- mesenchymal spectrum, overcoming traditional EpCAM paradigm limitations. We also uncovered markers for depleting WBCs and CD45-negative contaminants co-purifying with CTCs during isolation. Combining these biomarkers with microfluidic technologies enables comprehensive CTC capture and antibodies-based purification, overcoming limitations of platforms relying solely on epithelial markers like EpCAM, and opening new avenues for early detection, and real-time therapeutic monitoring.
Introduzione: L'analisi delle cellule tumorali circolanti (CTC) offre una potente strategia minimamente invasiva per monitorare la progressione del cancro e comprendere l'eterogeneità tumorale. Le attuali metodologie di isolamento delle CTC si basano prevalentemente sulla selezione positiva tramite la molecola di adesione delle cellule epiteliali (EpCAM), che tende a catturare CTC epiteliali, trascurando quelle con fenotipi mesenchimali o intermedi. Per superare queste limitazioni, il nostro studio propone un protocollo innovativo che integra l’arricchimento microfluidico basato sulle dimensioni con analisi molecolari avanzate, consentendo una caratterizzazione imparziale delle CTC provenienti da tumori solidi diversi. Metodi: Il nostro dispositivo microfluidico personalizzato isola le CTC in base alla loro dimensione tramite gradini con dimensioni decrescenti (fino a 10 μm), per massimizzare il recupero delle cellule tumorali e minimizzare la contaminazione da sangue. Il dispositivo è stato validato con cellule MDA- MB-231, una linea cellulare di carcinoma mammario triplo negativo (TNBC), aggiunte a campioni di sangue di donatori sani. Successivamente, sono stati processati anche campioni di pazienti con TNBC. Le cellule tumorali arricchite sono state caratterizzate con immunofluorescenza, qRT-PCR e sequenziamento dell’RNA a singola cellula. In parallelo, è stato sequenziato l’esoma dei PBMC per affinare ulteriormente la caratterizzazione molecolare delle CTC, fornendo dati genomici specifici del paziente. Infine, un'analisi trascrittomica completa di 3.302 profili di RNA a singola cellula ha permesso di distinguere le CTC autentiche dalle cellule contaminanti del sangue e di identificare nuovi marker utili per la selezione positiva delle CTC e per la deplezione negativa delle cellule ematiche. Risultati: La piattaforma microfluidica ottimizzata ha raggiunto un’efficienza di cattura del 66%, dimostrando l’effettivo arricchimento di cellule tumorali con fenotipi epiteliali-mesenchimali intermedi, come evidenziato dall’espressione concomitante di marker epiteliali (KRT, EpCAM) e mesenchimali (VIM, CAV). L'assenza di marker mesenchimali nelle tecniche commerciali di isolamento evidenzia il vantaggio della microfluidica, basata sulla dimensione, nel catturare l'intero spettro delle CTC. L'analisi trascrittomica a singola cellula ha identificato 872 CTC autentiche, su 3.302, validate tramite analisi di aneuploidia e ciclo cellulare. Sono stati scoperti, per la prima volta, nuovi marker specifici per sottotipo, come CAV1 e AXL per le CTC mesenchimali, che consentono una purificazione e caratterizzazione ad ampio spettro delle CTC. Inoltre, l’integrazione dei dati di sequenziamento dei PBMC ha confermato la presenza di contaminanti negativi per CD45 nella frazione arricchita di CTC, spesso erroneamente considerate CTC. Per la selezione negativa di questi contaminanti abbiamo identificato marker come ITGA2B, GNG11 e TMEM40, migliorando la purezza nelle analisi successive. Infine, sono stati scoperti anche marker pan-CTC, come TM4SF1, CD59, TACSTD2, SPINT2, convalidati su più sottotipi tumorali, fornendo uno strumento per rilevare fenotipi ibridi rari, indipendentemente dal loro stato. Conclusioni: Questo studio presenta un workflow per l'isolamento, la purificazione e la caratterizzazione delle CTC. Combinando l’arricchimento microfluidico basato sulle dimensioni con analisi bioinformatiche, abbiamo dimostrato la fattibilità di catturare CTC, e la loro purificazione attraverso anticorpi consentirà di superare i limiti delle piattaforme che utilizzano solo marker epiteliali. L’identificazione di un sottogruppo epiteliale EpCAM-negativo e la scoperta di nuovi marker per CTC e contaminanti, aprono nuove vie per la diagnosi precoce del cancro e il monitoraggio terapeutico.
Expanding circulating tumor cell detection beyond the EpCAM horizon
TERRAZZAN, ANNA
2025
Abstract
Background: The analysis of circulating tumor cells (CTCs) offers a powerful, minimally invasive strategy for tracking cancer progression, understanding tumor heterogeneity, and developing precision oncology. Current CTC isolation methods predominantly rely on epithelial cell adhesion molecule (EpCAM)-based positive selection, which biases the capture of epithelial-like CTCs, while potentially missing those with mesenchymal or intermediate phenotypes. To overcome these limitations, our study proposes an innovative workflow integrating size-based microfluidic enrichment with advanced molecular analyses, enabling a comprehensive characterization of CTCs from diverse solid tumors. Methods: Our custom-built microfluidic device was designed to isolate CTCs based on their size through a stepped structure with a limit-gap dimension of 10μm to maximize tumor cell recovery while minimizing contamination by blood cells. The device was validated using MDA-MB-231 cells, a triple-negative breast cancer (TNBC) cell line, spiked into blood samples from healthy donors. Subsequently, blood samples from TNBC patients were processed in parallel for CTC isolation and peripheral blood mononuclear cell (PBMC) collection. Enriched cancer cells underwent multimodal characterization, including immunofluorescence, qRT-PCR, and single-cell RNA sequencing. Whole-exome sequencing (WES) of PBMCs provides patient-specific genomic data to further refine the molecular characterization of CTCs. Moreover, we performed a comprehensive transcriptomic analysis of 3,302 single-cell RNA sequencing profiles to distinguish the bona-fide CTCs from contaminant blood cells, identifying a panel of novel markers for positive selection of CTCs and negative depletion of blood-borne cells. Results: The optimized microfluidic platform with the Filtration-chip achieved a capture efficiency of 66%, allowing successful enrichment of cancer cells and CTCs with intermediate epithelial- mesenchymal phenotypes, evidenced by concurrent expression of epithelial (KRT, EpCAM) and mesenchymal (VIM, CAV) markers. The absence of mesenchymal markers in commercial antibody- antigen isolation techniques highlights the advantage of size-based microfluidics in capturing the full spectrum of CTC diversity. Single-cell transcriptomic integration of 3302 putative CTC profiles, obtained from databases, identified 872 bona-fide CTCs validated via aneuploidy and cell cycle analyses. Novel subtype-specific markers were discovered, such as CAV1 and AXL for mesenchymal CTCs, enabling refined characterization and purification of CTCs. The Integration of PBMC sequencing data confirmed CD45-negative contaminants in the CTC-enriched fraction, often misidentified as CTCs. Further analysis highlighted markers for effective negative selection of these residual contaminants, like ITGA2B, GNG11 and TMEM40, improving purity in downstream analyses. This dual-selection strategy incorporated pan-CTC markers (e.g., TM4SF1, CD59, TACSTD2, SPINT2) validated across multiple tumor subtypes, providing a framework for detecting rare hybrid phenotypes regardless of their status. Conclusions: This study presents a robust workflow for isolation, purification, and transcriptomic characterization of CTC. Coupling size-based microfluidic enrichment with molecular and bioinformatic analyses demonstrated capturing rare CTC populations across the epithelial- mesenchymal spectrum, overcoming traditional EpCAM paradigm limitations. We also uncovered markers for depleting WBCs and CD45-negative contaminants co-purifying with CTCs during isolation. Combining these biomarkers with microfluidic technologies enables comprehensive CTC capture and antibodies-based purification, overcoming limitations of platforms relying solely on epithelial markers like EpCAM, and opening new avenues for early detection, and real-time therapeutic monitoring.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhDthesis_Terrazzan_Anna_def_pdfa.pdf
embargo fino al 19/03/2026
Descrizione: PhDThesis_Anna_Terrazzan
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
9.27 MB
Formato
Adobe PDF
|
9.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


