Cardiovascular diseases (CVDs) remain a leading cause of global morbidity and mortality, characterized by complex pathophysiologies involving endothelial dysfunction, inflammation, and maladaptive cellular signaling. The Notch signaling pathway, a highly conserved mechanism regulating cell fate determination, has emerged as a pivotal actor in cardiovascular homeostasis and pathology. This thesis investigates the potential of modulating Notch signaling to address critical challenges in CVD management, including inflammatory responses and complications associated with conditions such as COVID-19 and cancer therapy-induced cardiotoxicity. The research examines the role of Notch in COVID-19, focusing on the effects of CB-103, an inhibitor of Notch transcriptional activity, on the activation of peripheral blood mononuclear cells (PBMC) during COVID-19-related cytokine storm. Additionally, it evaluates transcriptomic changes in endothelial function mediated by soluble factors present in the serum of COVID-19 patients. Further, the study explores the interplay between Notch signaling and estrogen pathways in macrophage polarization, elucidating mechanisms through which hormonal regulation influences immune responses. It also addresses the cardiotoxic effects of ErbB2-targeting agents used in cancer therapy focusing on how disruptions in Notch signaling contribute to adverse cardiovascular outcomes associated with cancer treatment. The thesis reports preliminary advancements in the development of a physiologically relevant three-dimensional (3D) vascular model that mimics human vasculature using 3D bioprinting technologies. This bioprinted model will serve as a platform for investigating Notch signaling dynamics within the vascular microenvironment, offering a novel approach to studying vascular biology and disease. Key findings underscore the central role of Notch signaling in regulating inflammation and cardiovascular homeostasis across diverse contexts. By integrating molecular biology, advanced 3D bioprinting technologies, and translational research, this thesis could contribute to the development of Notch-targeted therapies for cardiovascular and inflammatory diseases. This multidisciplinary approach highlights the potential of bridging cellular signaling pathways with innovative biotechnological platforms, such as bioprinted models, as tools for fundamental research and drug development.
Le malattie cardiovascolari (CVD) rappresentano ancora una delle principali cause di morbilità e mortalità a livello globale, caratterizzate da patofisiologie complesse che coinvolgono disfunzione endoteliale, infiammazione e disregolazione di vie di segnalazione cellulare. La via di segnalazione Notch, un meccanismo altamente conservato che partecipa alla differenziazione cellulare, è emersa come un attore chiave nel mantenimento dell’omeostasi e nell’insorgenza delle patologie cardiovascolari. Questa tesi esplora il potenziale della modulazione della segnalazione Notch per la gestione delle CVD, agendo sui processi infiammatori e le complicazioni associate a condizioni quali il COVID-19 e la cardiotossicità indotta dalle terapie oncologiche. La ricerca analizza il ruolo di Notch nell'attivazione delle cellule mononucleate del sangue periferico (PBMC) durante la tempesta citochinica associata al COVID-19, concentrandosi sugli effetti di CB-103, un inibitore dell'attività trascrizionale di Notch. Inoltre, vengono valutate le alterazioni nella trascrittomica di cellule endoteliali mediate da fattori solubili presenti nel siero di pazienti COVID-19. Lo studio esplora anche l’interazione tra la segnalazione Notch e la via di segnalazione degli estrogeni nella polarizzazione dei macrofagi, approfondendo i meccanismi attraverso cui la regolazione ormonale influenza le risposte immunitarie. Un altro aspetto affrontato è lo studio delle alterazioni della segnalazione Notch coinvolte nella cardiotossicità associati ai farmaci diretti contro ErbB2 utilizzati nelle terapie antitumorali. Infine, la tesi riporta risultati preliminari nello sviluppo di un modello vascolare tridimensionale (3D) fisiologicamente rilevante, ottenuto mediante tecnologie di 3D bioprinting. Questo modello 3D di vaso sanguigno rappresenterà una piattaforma innovativa per studiare la via di segnalazione Notch all'interno del microambiente vascolare, offrendo un nuovo approccio allo studio della biologia vascolare e delle patologie associate. I risultati sottolineano il ruolo centrale della segnalazione Notch nella regolazione dell'infiammazione e dell’omeostasi cardiovascolare in diversi contesti patologici. Integrando biologia molecolare, tecnologie avanzate di 3D bioprinting e ricerca traslazionale, questa tesi può contribuire allo sviluppo di terapie mirate a Notch per il trattamento delle malattie cardiovascolari e infiammatorie. Questo approccio multidisciplinare evidenzia il potenziale di combinare lo studio delle vie di segnalazione cellulare con piattaforme biotecnologiche innovative, come i modelli biologici 3D, per la ricerca di base e lo sviluppo di nuovi farmaci.
Exploring Notch Signaling in Inflammation and Cancer-Therapy Induced Cardiotoxicity: Dysregulation Mechanisms and 3D Vascular Model Setup for Future Investigations
SEVERI, Paolo
2025
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of global morbidity and mortality, characterized by complex pathophysiologies involving endothelial dysfunction, inflammation, and maladaptive cellular signaling. The Notch signaling pathway, a highly conserved mechanism regulating cell fate determination, has emerged as a pivotal actor in cardiovascular homeostasis and pathology. This thesis investigates the potential of modulating Notch signaling to address critical challenges in CVD management, including inflammatory responses and complications associated with conditions such as COVID-19 and cancer therapy-induced cardiotoxicity. The research examines the role of Notch in COVID-19, focusing on the effects of CB-103, an inhibitor of Notch transcriptional activity, on the activation of peripheral blood mononuclear cells (PBMC) during COVID-19-related cytokine storm. Additionally, it evaluates transcriptomic changes in endothelial function mediated by soluble factors present in the serum of COVID-19 patients. Further, the study explores the interplay between Notch signaling and estrogen pathways in macrophage polarization, elucidating mechanisms through which hormonal regulation influences immune responses. It also addresses the cardiotoxic effects of ErbB2-targeting agents used in cancer therapy focusing on how disruptions in Notch signaling contribute to adverse cardiovascular outcomes associated with cancer treatment. The thesis reports preliminary advancements in the development of a physiologically relevant three-dimensional (3D) vascular model that mimics human vasculature using 3D bioprinting technologies. This bioprinted model will serve as a platform for investigating Notch signaling dynamics within the vascular microenvironment, offering a novel approach to studying vascular biology and disease. Key findings underscore the central role of Notch signaling in regulating inflammation and cardiovascular homeostasis across diverse contexts. By integrating molecular biology, advanced 3D bioprinting technologies, and translational research, this thesis could contribute to the development of Notch-targeted therapies for cardiovascular and inflammatory diseases. This multidisciplinary approach highlights the potential of bridging cellular signaling pathways with innovative biotechnological platforms, such as bioprinted models, as tools for fundamental research and drug development.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD thesis- Paolo Severi.pdf
embargo fino al 19/03/2026
Descrizione: PhD thesis- Paolo Severi
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
10.73 MB
Formato
Adobe PDF
|
10.73 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


