Currently, no specific gold-standard therapeutic treatment exists for Pleural Mesothelioma (PM). In cases of early-stage disease with the epithelioid histotype, multimodal therapy (combining surgery, chemotherapy, and radiotherapy) is considered the most effective option for improving prognosis. However, median survival remains around 12 months regardless of the chosen therapy. The challenges in providing adequate treatment underscore the importance of pharmacological and experimental research aimed at developing therapies to make the disease more manageable and improve survival outcomes. Recent studies have highlighted that altered calcium (Ca²⁺) signaling in tumor cells affects the development and progression of neoplasms by influencing metabolism and cell death. Based on these findings, research has expanded to examine Ca²⁺ metabolism in PM cells and assess their resistance to pharmacological treatments. The results obtained in this study provide critical insights into the role of calcium ions in the biology of malignant pleural mesothelioma (MPM) and their implications for improving standard therapies. Firstly, we observed that primary MPM cells exhibit significantly reduced proliferative capacity compared to non-tumor mesothelial cells. While this characteristic may seem counterintuitive for an aggressive cancer like mesothelioma, it could reflect a metabolic adaptation or alterations in survival signaling pathways. These cells appear to retain their resistance to apoptotic stimuli, a hallmark of malignant neoplasms. In this context, intracellular calcium dynamics, both at the cytosolic and mitochondrial levels, play a central role. The reduction in calcium oscillations and signal amplitude in MPM cells not only compromises the regulation of fundamental processes such as energy metabolism and apoptosis but may also represent an adaptive mechanism that helps tumor cells survive in a hostile environment. Analysis of the response to standard chemotherapeutics, pemetrexed, and cisplatin further revealed substantial differences between tumor and non-tumor cells. Normal mesothelial cells exhibited robust intracellular calcium mobilization in response to treatment, accompanied by significant activation of apoptotic pathways. Conversely, pleural mesothelioma cells were refractory to these signals, showing no significant variations in calcium levels and failing to induce apoptosis. These findings suggest that tumor cell resistance to chemotherapeutics may be mediated by alterations in calcium regulation mechanisms, including ion channels, pumps, and proteins involved in intracellular calcium storage and release. A critical aspect emerging from our experiments is the potential of extracellular calcium to overcome this resistance. Increasing calcium concentrations in the culture medium sensitized MPM cells, restoring intracellular calcium mobilization and activating previously inactive apoptotic pathways. This finding underscores the crucial role of calcium as a modulator of cell survival and suggests that targeting calcium homeostasis could represent an effective therapeutic strategy for treating mesothelioma. The results obtained from the murine recurrence model of mesothelioma further reinforce these observations. Combining standard therapy with high calcium concentrations resulted in a significant reduction in residual tumor mass and improved animal survival compared to standard therapy alone. These findings highlight the synergistic potential of calcium in enhancing the efficacy of conventional chemotherapeutic treatments. Overall, our data suggest that calcium insensitivity and resistance to apoptosis are key mechanisms contributing to the aggressiveness and refractory nature of pleural mesothelioma. However, using calcium as a therapeutic adjuvant offers a promising perspective for overcoming these barriers and improving clinical outcomes.
Attualmente non esiste uno specifico trattamento terapeutico gold-standard per il mesotelioma pleurico (PM). Nei casi di malattia in fase iniziale con istotipo epitelioide, la terapia multimodale (che combina chirurgia, chemioterapia e radioterapia) è considerata l'opzione più efficace per migliorare la prognosi. Tuttavia, la sopravvivenza mediana rimane di circa 12 mesi indipendentemente dalla terapia scelta. Studi recenti hanno evidenziato che l'alterazione della segnalazione del calcio (Ca²⁺) nelle cellule tumorali influisce sullo sviluppo e sulla progressione delle neoplasie, influenzando il metabolismo e la morte cellulare. Sulla base di questi risultati, la ricerca si è ampliata per esaminare il metabolismo del Ca²⁺ nelle cellule PM e valutare la loro resistenza ai trattamenti farmacologici. I risultati ottenuti forniscono approfondimenti sul ruolo degli ioni calcio nella biologia del mesotelioma pleurico maligno (MPM) e sulle implicazioni per il miglioramento delle terapie standard. In primo luogo, abbiamo osservato che le cellule primarie di MPM presentano una capacità proliferativa significativamente ridotta rispetto alle cellule mesoteliali non tumorali. Sebbene questa caratteristica possa sembrare controintuitiva per un tumore aggressivo come il mesotelioma, potrebbe riflettere un adattamento metabolico o alterazioni nelle vie di segnalazione della sopravvivenza. Queste cellule sembrano mantenere la loro resistenza agli stimoli apoptotici, un segno distintivo delle neoplasie maligne. In questo contesto, le dinamiche del calcio intracellulare, sia a livello citosolico che mitocondriale, svolgono un ruolo centrale. La riduzione delle oscillazioni del calcio e dell'ampiezza del segnale nelle cellule di MPM non solo compromette la regolazione di processi fondamentali come il metabolismo energetico e l'apoptosi, ma può anche rappresentare un meccanismo adattativo che aiuta le cellule tumorali a sopravvivere in un ambiente ostile. L'analisi della risposta ai chemioterapici standard, pemetrexed e cisplatino, ha rivelato ulteriori differenze sostanziali tra cellule tumorali e non tumorali. Le cellule mesoteliali normali hanno mostrato una forte mobilitazione del calcio intracellulare in risposta al trattamento, accompagnata da una significativa attivazione delle vie apoptotiche. Al contrario, le cellule di mesotelioma pleurico sono risultate refrattarie a questi segnali, non mostrando variazioni significative nei livelli di calcio e non riuscendo a indurre apoptosi. Questi risultati suggeriscono che la resistenza delle cellule tumorali ai chemioterapici può essere mediata da alterazioni dei meccanismi di regolazione del calcio, compresi i canali ionici, le pompe e le proteine coinvolte nell'immagazzinamento e nel rilascio del calcio intracellulare. Un aspetto critico che emerge dai nostri esperimenti è il potenziale del calcio extracellulare per superare questa resistenza. L'aumento delle concentrazioni di calcio nel terreno di coltura ha sensibilizzato le cellule MPM, ripristinando la mobilizzazione del calcio intracellulare e attivando vie apoptotiche precedentemente inattive. Questo risultato sottolinea il ruolo cruciale del calcio come modulatore della sopravvivenza cellulare e suggerisce che puntare sull'omeostasi del calcio potrebbe rappresentare una strategia terapeutica efficace per il trattamento del mesotelioma. I risultati ottenuti nel modello murino di recidiva del mesotelioma rafforzano ulteriormente queste osservazioni. La combinazione della terapia standard con alte concentrazioni di calcio ha portato a una riduzione significativa della massa tumorale residua e a un miglioramento della sopravvivenza degli animali rispetto alla sola terapia standard. Questi risultati evidenziano il potenziale sinergico del calcio nel potenziare l'efficacia dei trattamenti chemioterapici convenzionali.
Calcium-driven therapeutic approaches in pleural mesothelioma
DELLA SALA, Mario
2025
Abstract
Currently, no specific gold-standard therapeutic treatment exists for Pleural Mesothelioma (PM). In cases of early-stage disease with the epithelioid histotype, multimodal therapy (combining surgery, chemotherapy, and radiotherapy) is considered the most effective option for improving prognosis. However, median survival remains around 12 months regardless of the chosen therapy. The challenges in providing adequate treatment underscore the importance of pharmacological and experimental research aimed at developing therapies to make the disease more manageable and improve survival outcomes. Recent studies have highlighted that altered calcium (Ca²⁺) signaling in tumor cells affects the development and progression of neoplasms by influencing metabolism and cell death. Based on these findings, research has expanded to examine Ca²⁺ metabolism in PM cells and assess their resistance to pharmacological treatments. The results obtained in this study provide critical insights into the role of calcium ions in the biology of malignant pleural mesothelioma (MPM) and their implications for improving standard therapies. Firstly, we observed that primary MPM cells exhibit significantly reduced proliferative capacity compared to non-tumor mesothelial cells. While this characteristic may seem counterintuitive for an aggressive cancer like mesothelioma, it could reflect a metabolic adaptation or alterations in survival signaling pathways. These cells appear to retain their resistance to apoptotic stimuli, a hallmark of malignant neoplasms. In this context, intracellular calcium dynamics, both at the cytosolic and mitochondrial levels, play a central role. The reduction in calcium oscillations and signal amplitude in MPM cells not only compromises the regulation of fundamental processes such as energy metabolism and apoptosis but may also represent an adaptive mechanism that helps tumor cells survive in a hostile environment. Analysis of the response to standard chemotherapeutics, pemetrexed, and cisplatin further revealed substantial differences between tumor and non-tumor cells. Normal mesothelial cells exhibited robust intracellular calcium mobilization in response to treatment, accompanied by significant activation of apoptotic pathways. Conversely, pleural mesothelioma cells were refractory to these signals, showing no significant variations in calcium levels and failing to induce apoptosis. These findings suggest that tumor cell resistance to chemotherapeutics may be mediated by alterations in calcium regulation mechanisms, including ion channels, pumps, and proteins involved in intracellular calcium storage and release. A critical aspect emerging from our experiments is the potential of extracellular calcium to overcome this resistance. Increasing calcium concentrations in the culture medium sensitized MPM cells, restoring intracellular calcium mobilization and activating previously inactive apoptotic pathways. This finding underscores the crucial role of calcium as a modulator of cell survival and suggests that targeting calcium homeostasis could represent an effective therapeutic strategy for treating mesothelioma. The results obtained from the murine recurrence model of mesothelioma further reinforce these observations. Combining standard therapy with high calcium concentrations resulted in a significant reduction in residual tumor mass and improved animal survival compared to standard therapy alone. These findings highlight the synergistic potential of calcium in enhancing the efficacy of conventional chemotherapeutic treatments. Overall, our data suggest that calcium insensitivity and resistance to apoptosis are key mechanisms contributing to the aggressiveness and refractory nature of pleural mesothelioma. However, using calcium as a therapeutic adjuvant offers a promising perspective for overcoming these barriers and improving clinical outcomes.| File | Dimensione | Formato | |
|---|---|---|---|
|
CALCIUM-DRIVEN THERAPEUTIC APPROACHES IN PLEURAL MESOTHELIOMA_pdfA.pdf
embargo fino al 19/03/2026
Descrizione: CALCIUM-DRIVEN THERAPEUTIC APPROACHES IN PLEURAL MESOTHELIOMA_pdfA
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


