Classical tomographic imaging is soundly understood and widely employed in medicine, nondestructive testing and security applications. However, it still o↵ers many challenges when it comes to dynamic tomography. Indeed, in classical tomography, the target is usually assumed to be stationary during the data acquisition, but this is not a realistic model. Moreover, to ensure a lower X-ray radiation dose, only a sparse collection of measurements per time step is assumed to be available. With such a set up, we deal with a sparse data, dynamic tomography problem, which clearly calls for regularization, due to the loss of information in the data and the ongoing motion. In this paper, we propose a 3D variational formulation based on 3D shearlets, where the third dimension accounts for the motion in time, to reconstruct a moving 2D object. Results are presented for real measured data and compared against a 2D static model, in the case of fan-beam geometry. Results are preliminary but show that better reconstructions can be achieved when motion is taken into account.
Shearlet-based regularization in sparse dynamic tomography
Bubba T
Primo
;
2017
Abstract
Classical tomographic imaging is soundly understood and widely employed in medicine, nondestructive testing and security applications. However, it still o↵ers many challenges when it comes to dynamic tomography. Indeed, in classical tomography, the target is usually assumed to be stationary during the data acquisition, but this is not a realistic model. Moreover, to ensure a lower X-ray radiation dose, only a sparse collection of measurements per time step is assumed to be available. With such a set up, we deal with a sparse data, dynamic tomography problem, which clearly calls for regularization, due to the loss of information in the data and the ongoing motion. In this paper, we propose a 3D variational formulation based on 3D shearlets, where the third dimension accounts for the motion in time, to reconstruct a moving 2D object. Results are presented for real measured data and compared against a 2D static model, in the case of fan-beam geometry. Results are preliminary but show that better reconstructions can be achieved when motion is taken into account.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.