Si propone una formulazione aumentata delle equazioni alle acque basse per sezioni qualunque; la variabile addizionale è una grandezza geometrica (scalare o vettoriale) della sezione. Il modello numerico è uno schema ai volumi finiti, accurato al secondo ordine, che utilizza un solutore di Riemann di Dumbser-Osher-Toro e un path non lineare all’interfaccia di celle contigue. Si mostra l’applicabilità ad una vasta classe di geometrie differenti, si controlla la C-property nel caso di liquido in quiete, si conferma l’ordine di accuratezza mediante verifica a posteriori.

Sistema di de Saint Venant aumentato per sezioni di forma qualunque

Alessandro Valiani
Primo
;
Valerio Caleffi
Ultimo
2024

Abstract

Si propone una formulazione aumentata delle equazioni alle acque basse per sezioni qualunque; la variabile addizionale è una grandezza geometrica (scalare o vettoriale) della sezione. Il modello numerico è uno schema ai volumi finiti, accurato al secondo ordine, che utilizza un solutore di Riemann di Dumbser-Osher-Toro e un path non lineare all’interfaccia di celle contigue. Si mostra l’applicabilità ad una vasta classe di geometrie differenti, si controlla la C-property nel caso di liquido in quiete, si conferma l’ordine di accuratezza mediante verifica a posteriori.
2024
9791221069419
File in questo prodotto:
File Dimensione Formato  
IDRA2024_paper_30.pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 328.99 kB
Formato Adobe PDF
328.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2563591.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 39.99 MB
Formato Adobe PDF
39.99 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2563591
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact