Machine learning is an effective methodology for enabling real-time data-driven decision-making in tactical scenarios, but its application in such scenarios raises many challenges due to data volume, unpredictable connectivity, and infrastructural challenges in edge environments. Furthermore, the need to perform training operations on remote powerful computing nodes might not be suited for tactical edge networks that often lack high bandwidth links, thus causing critical delays in assessing relevant information for decision-making. To overcome these challenges and enable machine learning at the tactical edge, this paper presents RoamML, a novel distributed continual learning approach tailored explicitly for the tactical edge. Built upon the foundational principle that “moving the model is usually much cheaper than transferring extensive datasets”, RoamML seamlessly performs training operations by traversing network nodes, according to the data gravity concept. As RoamML encounters new data at each node, it continually trains on the encountered data to ensure that RoamML maintains an up-to-date and accurate model without transferring data to a centralized entity. Experimental results comparing RoamML with a baseline centralized machine learning solution show the potential of the proposed approach, which is capable of closely matching the accuracy of the baseline method.
RoamML: Distributed Machine Learning at the Tactical Edge
Dahdal, Simon
Primo
;Poltronieri, Filippo;Gilli, Alessandro;Tortonesi, Mauro;
2023
Abstract
Machine learning is an effective methodology for enabling real-time data-driven decision-making in tactical scenarios, but its application in such scenarios raises many challenges due to data volume, unpredictable connectivity, and infrastructural challenges in edge environments. Furthermore, the need to perform training operations on remote powerful computing nodes might not be suited for tactical edge networks that often lack high bandwidth links, thus causing critical delays in assessing relevant information for decision-making. To overcome these challenges and enable machine learning at the tactical edge, this paper presents RoamML, a novel distributed continual learning approach tailored explicitly for the tactical edge. Built upon the foundational principle that “moving the model is usually much cheaper than transferring extensive datasets”, RoamML seamlessly performs training operations by traversing network nodes, according to the data gravity concept. As RoamML encounters new data at each node, it continually trains on the encountered data to ensure that RoamML maintains an up-to-date and accurate model without transferring data to a centralized entity. Experimental results comparing RoamML with a baseline centralized machine learning solution show the potential of the proposed approach, which is capable of closely matching the accuracy of the baseline method.| File | Dimensione | Formato | |
|---|---|---|---|
|
Data_Gravity_for_ML_mobile_models___MILCOM_2023_Workshop.pdf
solo gestori archivio
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
578.5 kB
Formato
Adobe PDF
|
578.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
RoamML_Distributed_Machine_Learning_at_the_Tactical_Edge.pdf
solo gestori archivio
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


