Transcranial Magnetic Stimulation (TMS) combined with EEG recordings (TMS-EEG) has shown great potential in the study of the brain and in particular of Alzheimer's Disease (AD). In this study, we propose an automatic method of determining the duration of TMS-induced perturbation of the EEG signal as a potential metric reflecting the brain's functional alterations. A preliminary study is conducted in patients with Alzheimer's disease (AD). Three metrics for characterizing the strength and duration of TMS-evoked EEG (TEP) activity are proposed and their potential in identifying AD patients from healthy controls was investigated. A dataset of TMS-EEG recordings from 17 AD and 17 healthy controls (HC) was used in our analysis. A Random Forest classification algorithm was trained on the extracted TEP metrics and its performance is evaluated in a leave-one-subject-out cross-validation. The created model showed promising results in identifying AD patients from HC with an accuracy, sensitivity and specificity of 69.32%, 72.23% and 66.41%, respectively. Clinical relevance - Three preliminary metrics were proposed to quantify the strength and duration of the response to TMS on EEG data. The proposed metrics were successfully used to identify Alzheimer's disease patients from healthy controls. These results proved the potential of this approach which will provide additional diagnostic value.
Characterizing TMS-EEG perturbation indexes using signal energy: initial study on Alzheimer's Disease classification
Borghi I.;Koch G.Penultimo
;
2022
Abstract
Transcranial Magnetic Stimulation (TMS) combined with EEG recordings (TMS-EEG) has shown great potential in the study of the brain and in particular of Alzheimer's Disease (AD). In this study, we propose an automatic method of determining the duration of TMS-induced perturbation of the EEG signal as a potential metric reflecting the brain's functional alterations. A preliminary study is conducted in patients with Alzheimer's disease (AD). Three metrics for characterizing the strength and duration of TMS-evoked EEG (TEP) activity are proposed and their potential in identifying AD patients from healthy controls was investigated. A dataset of TMS-EEG recordings from 17 AD and 17 healthy controls (HC) was used in our analysis. A Random Forest classification algorithm was trained on the extracted TEP metrics and its performance is evaluated in a leave-one-subject-out cross-validation. The created model showed promising results in identifying AD patients from HC with an accuracy, sensitivity and specificity of 69.32%, 72.23% and 66.41%, respectively. Clinical relevance - Three preliminary metrics were proposed to quantify the strength and duration of the response to TMS on EEG data. The proposed metrics were successfully used to identify Alzheimer's disease patients from healthy controls. These results proved the potential of this approach which will provide additional diagnostic value.File | Dimensione | Formato | |
---|---|---|---|
Characterizing_TMS-EEG_perturbation_indexes_using_signal_energy_initial_study_on_Alzheimers_Disease_classification.pdf
solo gestori archivio
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
500.51 kB
Formato
Adobe PDF
|
500.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.