Buildings can weigh up to 40% of the total primary energy requirements of industrialized countries. A wider deployment of renewable energy sources is therefore crucial to fulfill the increasing trend towards decarbonization, and several studies demonstrated that the integration of photovoltaic technology in building façades had a great potential in decreasing the building energy loads. In fact, the implementation of the so-called Building Integrated Photovoltaic devices is significantly increasing. However, there is still little implementation of Luminescent Solar Concentrators (LSC) panels in this type of structures, even though they could be a very promising technology to be installed in building façades. Here the realization of a natural Ventilated Façade (VF) integrating a LSC device as external pane is presented. A VF is the combination of two skins separated by an air cavity, and its working principle lies in the exploitation of solar radiation to create a thermal gradient between the outer and inner pane. The LSC optical properties were modeled with Matlab to describe the optical properties of this device (absorption, transmission, and reflection spectrum), and confirmed that LSC panels could be manufactured also with dimensions compatible with the typical ones of the building sector. The LSC optical properties were inserted in a finite element model developed with the software COMSOL Multiphysics, whose results were validated thanks to a comparison with experimental data. The obtained thermal and optical properties were then used in a new model created to perform the retrofit of a typical building envelope, which proved that this structure can be employed to decrease the building thermal budget in both summer and winter season. Finally, the VF thermal transmittance was compared to the maximum values prescribed by the Italian directive, confirming a promising result for a “proof of concept” research work.
La necessità di sopperire al fabbisogno energetico degli edifici attraverso fonti rinnovabili gioca un ruolo fondamentale nell’attuale processo di decarbonizzazione. Nei paesi industrializzati essi possono infatti rappresentare fino al 40% della produzione totale di energia primaria, percentuale a cui l’implementazione di dispositivi fotovoltaici architettonicamente integrati può apportare una riduzione significativa. Nonostante il loro impiego stia aumentando considerevolmente, l’implementazione di pannelli con tecnologia LSC è ancora poco diffusa in questo tipo di strutture, seppur essi siano particolarmente indicati per l’integrazione architettonica. In questo lavoro è presentata la realizzazione di una Facciata Ventilata (VF) con ventilazione naturale, che integra un dispositivo LSC come componente esterna. Una VF è una struttura formata da due componenti, chiamate anche pelli, separate da un’intercapedine d'aria, che si basa sullo sfruttamento della radiazione solare per regolare il confort termico dell’edificio. La modellazione delle proprietà ottiche delle varie componenti della VF è perciò fondamentale per valutare le performance del sistema, in particolare quelle dell’LSC, che sono state modellate utilizzando Matlab. Le simulazioni hanno confermato che è possibile realizzare pannelli aventi dimensioni compatibili a quelle tipiche del settore edile, che sfruttino questa tecnologia, rendendone quindi possibile l’implementazione in questo tipo di strutture. Le proprietà ottiche dell’LSC (spettro di assorbimento, trasmissione e riflessione) sono state poi inserite in un modello agli elementi finiti sviluppato con il software COMSOL Multiphysics, il quale ha permesso di studiare le proprietà termiche dell’intera VF tramite il confronto con dati sperimentali. Le proprietà fisiche dei materiali sono state poi inserite in un secondo modello termico al fine di eseguire il retrofit di un tipico involucro edilizio. I risultati hanno dimostrato che una VF ideata in questo modo è effettivamente in grado ridurre il budget termico dell'edificio sia nella stagione estiva che in quella invernale. Infine, il confronto tra la trasmittanza termica della VF e i valori massimi prescritti dalla direttiva italiana, ha evidenziato un risultato promettente per una tesi di ricerca di tipologia “proof of concept”.
DEVELOPMENT OF A PHOTOVOLTAIC VENTILATED FACADE -SMART SKIN- FOR THE CONTROL OF BUILDINGS THERMAL BUDGET
MANGHERINI, GIULIO
2023
Abstract
Buildings can weigh up to 40% of the total primary energy requirements of industrialized countries. A wider deployment of renewable energy sources is therefore crucial to fulfill the increasing trend towards decarbonization, and several studies demonstrated that the integration of photovoltaic technology in building façades had a great potential in decreasing the building energy loads. In fact, the implementation of the so-called Building Integrated Photovoltaic devices is significantly increasing. However, there is still little implementation of Luminescent Solar Concentrators (LSC) panels in this type of structures, even though they could be a very promising technology to be installed in building façades. Here the realization of a natural Ventilated Façade (VF) integrating a LSC device as external pane is presented. A VF is the combination of two skins separated by an air cavity, and its working principle lies in the exploitation of solar radiation to create a thermal gradient between the outer and inner pane. The LSC optical properties were modeled with Matlab to describe the optical properties of this device (absorption, transmission, and reflection spectrum), and confirmed that LSC panels could be manufactured also with dimensions compatible with the typical ones of the building sector. The LSC optical properties were inserted in a finite element model developed with the software COMSOL Multiphysics, whose results were validated thanks to a comparison with experimental data. The obtained thermal and optical properties were then used in a new model created to perform the retrofit of a typical building envelope, which proved that this structure can be employed to decrease the building thermal budget in both summer and winter season. Finally, the VF thermal transmittance was compared to the maximum values prescribed by the Italian directive, confirming a promising result for a “proof of concept” research work.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis Mangherini.pdf
accesso aperto
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Dimensione
3.75 MB
Formato
Adobe PDF
|
3.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.