We present the conceptual design of a compact light source named BriXSinO. BriXSinO was born as demonstrator of the Marix project, but it is also a dual high flux radiation source Inverse Compton Source (ICS) of X-ray and Free-Electron Laser of THz spectral range radiation conceived for medical applications and general applied research. The accelerator is a push-pull CW-SC Energy Recovery Linac (ERL) based on superconducting cavities technology and allows to sustain MW-class beam power with almost just one hundred kW active power issipation/consumption. ICS line produces 33 keV monochromatic X-Rays via Compton scattering of the electron beam with a laser system in Fabry-Pérot cavity at a repetition rate of 100 MHz. The THz FEL oscillator is based on an undulator imbedded in optical cavity and generates THz wavelengths from 15 to 50 micron.

Brixsino High-Flux Dual X-Ray and THz Radiation Source Based on Energy Recovery Linacs

G. Paterno;A. Taibi;
2022

Abstract

We present the conceptual design of a compact light source named BriXSinO. BriXSinO was born as demonstrator of the Marix project, but it is also a dual high flux radiation source Inverse Compton Source (ICS) of X-ray and Free-Electron Laser of THz spectral range radiation conceived for medical applications and general applied research. The accelerator is a push-pull CW-SC Energy Recovery Linac (ERL) based on superconducting cavities technology and allows to sustain MW-class beam power with almost just one hundred kW active power issipation/consumption. ICS line produces 33 keV monochromatic X-Rays via Compton scattering of the electron beam with a laser system in Fabry-Pérot cavity at a repetition rate of 100 MHz. The THz FEL oscillator is based on an undulator imbedded in optical cavity and generates THz wavelengths from 15 to 50 micron.
2022
978-3-95450-227-1
laser, electron, radiation, photon, cavity
File in questo prodotto:
File Dimensione Formato  
Drebot_2022_BriXSinO High-Flux Dual X-Ray and THz Radiation Source Based on ERLs.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 6.62 MB
Formato Adobe PDF
6.62 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2498818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact