Mislocalization and aggregation of RNA-binding proteins, especially TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS), can impair RNA metabolism and this is a key feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Frontotemporal lobar degeneration (FTLD). In particular it has been shown that TDP-43 could regulate sortilin 1 (Sort1) pre-mRNA splicing. Sort1 encodes a receptor able to regulate the levels of an important neurotrophic growth factor known as progranulin. Indeed, progranulin deficiency is certainly linked to FTLD cases with TDP-43 positive inclusion bodies (FTLD-TDP). In the past, it has been shown that abnormal deposition of TDP-43 in the cytosolic aggregates leads to inclusion of exon 17b (Ex17b) in Sort1 mRNA. In humans, but not in mouse, this exon contains a premature stop codon and following its inclusion may induce the production of a truncated Sort1 receptor. This short Sort1 receptor can impair progranulin metabolism and help to induce cytosolic TDP-43 aggregate formation, setting up a vicious circle that might eventually cause neuronal death. In this thesis, I have therefore set out to investigate the splicing elements responsible for differentially regulation of Ex17b inclusion in mice as opposed to humans. By studying mouse and human Sort1 Ex17b and their flanking intronic sequences I have therefore provided a novel insight into the complexity of the RNA-binding protein network that regulates the inclusion of the toxic human exon 17b. My study has revealed that this differential regulation between human and mouse is achieved in two major ways. First of all, serine/arginine (SR)-rich proteins bound only to mouse and not human Sort1 context and they enhanced Ex17b inclusion. The lack of these splicing enhancers in human sequence is one of the major factors that result in the normal exclusion of toxic Ex17b from human Sort1 mRNA. Secondly, I demonstrated that the inhibition of Ex17b inclusion in Sort1 mRNA was also considerably affected by co-operation of TDP-43 with additional RNA-binding proteins, including hnRNP L, PTB/nPTB, and hnRNP A1/A2 that differentially bound the human exon sequence compare to the mouse exon. Taken together, my results showed that the splicing regulatory elements have been differentially evolved in human vs. mouse Sort1 Ex17b sequences. Interestingly, mRNA expression of hnRNP A1/A2 and PTB/nPTB was significantly increased in the temporal lobes of FTLD-TDP patients. This observation suggests that in conditions of TDP-43 aggregation the expression of these splicing repressor proteins may increase to help downregulation of the toxic human exon inclusion. Even more in general, my study showed for the first time the importance of other hnRNPs beside TDP- 43 in regulation of the disease-related events. For the future, these data suggest that a comprehensive evaluation of RNA-binding protein network will promote our current knowledge about the role of TDP-43 in the disease pathogenesis and its consequences. This will hopefully open a new window towards obtaining better diagnostic and therapeutic capabilities for FTLD-TDP.

La delocalizzazione e l'aggregazione delle proteine leganti l’RNA, tra cui la “TAR DNA-binding protein 43” (TDP-43) e la “FUsed in Sarcoma” (FUS), possono alterare il metabolismo dell'RNA stesso risultando essere una caratteristica fondamentale di diverse malattie neurodegenerative, tra cui la Sclerosi Laterale Amiotrofica (SLA ) e la Degenerazione FrontoTemporale Lobare (FTLD). In particolare è stato dimostrato che la proteina TDP-43 potrebbe regolare il processamento dell’RNA messaggero (mRNA), e in particolare dello splicing, del gene “Sortilin 1” (Sort1). A sua volta Sort1 codifica per un recettore in grado di regolare i livelli di un importante fattore di crescita neurotrofico conosciuto come Progranulin. Da notare che la carenza di progranulin è legata ai casi di FTLD positivi per i corpi di inclusione contenenti TDP-43 (FTLD-TDP). In passato, è stato già dimostrato che l’anomala aggregazione di TDP-43 nel citosol comporta l’inclusione dell'esone 17b (Ex17b) nell’mRNA di Sort1. Negli esseri umani, ma non nel topo, questo esone contiene un codone di stop prematuro che, dopo la sua inclusione nell’mRNA, produce una forma tronca del recettore Sort1. Questa forma più piccola del recettore Sort1 può indurre un’alterazione nel metabolismo della Progranulina e portare alla formazione di aggregati di TDP-43 nel citosol, creando un circolo vizioso che potrebbe nel peggiore dei casi causare la morte neuronale. In questa tesi, ho quindi studiato e approfondito la regolazione dello splicing responsabile per la diversa inclusione/regolazione dell’esone Ex17b del gene Sort1 nel topo rispetto all’uomo. Studiando l’esone Ex17b e le annesse sequenze introniche, sia nel topo che nell’uomo, ho scoperto nuovi meccanismi associati alla complessa rete di proteine che legano l’RNA capaci di regolare l'inclusione “tossica” dell’esone 17b nell’uomo. Il mio studio ha inoltre rivelato che la diversa regolazione dell’esone Ex17b murino vs quello umano è dovuta a due fattori principali. In primo luogo, le proteine ricche in residui di serina/arginina (SR proteins) sono capaci di legare solo le sequenze di topo ma non quelle umane di Sort1, favorendo quindi l’inclusione dell’Ex17b murino. La mancanza di questi elementi promotori dello splicing è uno dei principali fattori che determinano la normale esclusione dell’ Ex17b tossico dall’mRNA umano di Sort1. In secondo luogo, ho dimostrato che l'inibizione dell’inclusione dell’Ex17b nell’mRNA di Sort1 nell’uomo è notevolmente influenzata dalla collaborazione di TDP-43 assieme ad altre proteine leganti l’RNA, tra cui hnRNP L, PTB/nPTB, e hnRNP A1/A2 capaci di legare la l’esone umano in modo diverso rispetto al topo. Nel loro insieme, i miei risultati hanno dimostrato che gli elementi regolatori dello splicing dell’Ex17b del gene Sort1 si sono evoluti diversamente nell’uomo rispetto al topo. È interessante notare che, l’espressione dell’mRNA di hnRNP A1/A2 e PTB/nPTB è significativamente aumentata nei lobi temporali di pazienti FTLD-TDP. Questa osservazione può suggerire che, in presenza degli aggregati di TDP-43, l'aumentata espressione di queste proteine potrebbe contribuire all’inibizione dell'inclusione tossica dell’esone umano. Ancora più in generale, il mio studio ha dimostrato per la prima volta l'importanza di altre proteine, quali le hnRNP, accanto a TDP-43 nella regolazione eventi correlati alla malattia neurodegenerativa. Per il futuro, questi dati hanno dimostrato che una valutazione completa della rete di proteine leganti l’RNA può incrementare le nostre attuali conoscenze sul ruolo di TDP-43 nella patogenesi della malattia e delle sue conseguenze. Questo, si spera aprirà una nuova via verso l'ottenimento di migliori capacità diagnostiche e terapeutiche per FTLD-TDP.

Splicing regulatory role of RNA binding proteins in suppressing the toxic Ex17b inclusion in human Sort1 mRNA

-
2017

Abstract

Mislocalization and aggregation of RNA-binding proteins, especially TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS), can impair RNA metabolism and this is a key feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Frontotemporal lobar degeneration (FTLD). In particular it has been shown that TDP-43 could regulate sortilin 1 (Sort1) pre-mRNA splicing. Sort1 encodes a receptor able to regulate the levels of an important neurotrophic growth factor known as progranulin. Indeed, progranulin deficiency is certainly linked to FTLD cases with TDP-43 positive inclusion bodies (FTLD-TDP). In the past, it has been shown that abnormal deposition of TDP-43 in the cytosolic aggregates leads to inclusion of exon 17b (Ex17b) in Sort1 mRNA. In humans, but not in mouse, this exon contains a premature stop codon and following its inclusion may induce the production of a truncated Sort1 receptor. This short Sort1 receptor can impair progranulin metabolism and help to induce cytosolic TDP-43 aggregate formation, setting up a vicious circle that might eventually cause neuronal death. In this thesis, I have therefore set out to investigate the splicing elements responsible for differentially regulation of Ex17b inclusion in mice as opposed to humans. By studying mouse and human Sort1 Ex17b and their flanking intronic sequences I have therefore provided a novel insight into the complexity of the RNA-binding protein network that regulates the inclusion of the toxic human exon 17b. My study has revealed that this differential regulation between human and mouse is achieved in two major ways. First of all, serine/arginine (SR)-rich proteins bound only to mouse and not human Sort1 context and they enhanced Ex17b inclusion. The lack of these splicing enhancers in human sequence is one of the major factors that result in the normal exclusion of toxic Ex17b from human Sort1 mRNA. Secondly, I demonstrated that the inhibition of Ex17b inclusion in Sort1 mRNA was also considerably affected by co-operation of TDP-43 with additional RNA-binding proteins, including hnRNP L, PTB/nPTB, and hnRNP A1/A2 that differentially bound the human exon sequence compare to the mouse exon. Taken together, my results showed that the splicing regulatory elements have been differentially evolved in human vs. mouse Sort1 Ex17b sequences. Interestingly, mRNA expression of hnRNP A1/A2 and PTB/nPTB was significantly increased in the temporal lobes of FTLD-TDP patients. This observation suggests that in conditions of TDP-43 aggregation the expression of these splicing repressor proteins may increase to help downregulation of the toxic human exon inclusion. Even more in general, my study showed for the first time the importance of other hnRNPs beside TDP- 43 in regulation of the disease-related events. For the future, these data suggest that a comprehensive evaluation of RNA-binding protein network will promote our current knowledge about the role of TDP-43 in the disease pathogenesis and its consequences. This will hopefully open a new window towards obtaining better diagnostic and therapeutic capabilities for FTLD-TDP.
MOHAGHEGHI, FATEMEH
PAGANI, Franco
File in questo prodotto:
File Dimensione Formato  
1_Thesis_Fatemeh Mohagheghi.pdf

Open Access dal 11/03/2017

Descrizione: Thesis pdf file
Tipologia: Tesi di dottorato
Dimensione 16.68 MB
Formato Adobe PDF
16.68 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2488281
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact