Anti-epileptic drugs (AEDs) do not control seizures in about a third of epileptic patients. Moreover, epilepsy is not only seizures, as many may think: this disease is characterized by a plethora of neurologic and psychiatric comorbidities, that are often not even referred by the patients because of the strong stigma affecting epilepsy. In the course of my PhD, I employed classical and holistic (systems genetics) approaches to try to tackle some of the major needs in epilepsy: 1) the identification of biomarkers of epileptogenesis, capable of identifying those individuals (estimated to be 10-20%) that will develop epilepsy following exposure to an epileptogenic insult like a brain trauma or an episode of status epilepticus; these biomarkers would be instrumental for the development of preventive therapies; 2) the treatment of seizures in drug-resistant patients; in particular, I focused on strategies to deliver therapeutic molecules that cannot cross the blood-brain barrier directly in the epileptogenic area; 3) the treatment of epilepsy comorbidities, that are generally not affected (and sometimes worsened) by currently available AEDs. Epilepsy comorbidities. Using a systems genetics approach, Sestrin 3 (SESN3) was identified as a master regulator of a network of pro-epileptic genes that is up-regulated in hippocampal samples from temporal lobe epilepsy (TLE) patients. To better understand the effects of SESN3, we decided to evaluate the phenotype of SESN3-knock-out (SESN3-KO) rats, using different experimental models of TLE, and behavioral testing. As expected, SESN3-KO rats were less susceptible to chemoconvulsant-induced status epilepticus. In addition, both at P7 and at adult age, SESN3-KOs were found to have a lower tendency to anxious behaviors than wild-type animals. These results suggest an implication of SESN3 not only in seizure generation, but also in epilepsy comorbidities. Biomarkers of epileptogenesis. A systems genetics approach was also applied to investigate biomarkers of epileptogenesis, by analyzing miRNA samples in plasma. A meta-analysis of data from 4 distinct epilepsy models identified the up-regulation of five miRNAs (three of which already known) in plasma samples of animals that would subsequently become epileptic, as compared with animals that would not become epileptic in spite of receiving an identical epileptogenic insult. Two of these miRNAs, namely miR-129-5p and miR-138-5p, were previously reported to be dysregulated in brain samples from experimental models of TLE and/or surgical resection of epileptic focus in patients. Drug-resistant seizures. Brain-derived neurotrophic factor (BDNF) and glial-cell line derived neurotrophic factor (GDNF) may exert an anti-epileptic effect, because they are known to modulate mechanisms at the basis of epilepsy development and seizures occurrence. However, they cannot cross the blood-brain barrier. We found that the delivery of these neurotrophic factors directly in the hippocampi of epileptic rats by using an encapsulated cell device highly decrease the frequency of epileptic seizures. Moreover, BDNF and GDNF treatment revert the cognitive impairment observed in the chronic phase of the disease. Taken together, the data presented in this PhD thesis illustrate how traditional and new, holistic approaches can provide information on the mechanisms of epileptogenesis and contribute to the development of epilepsy treatments.
I farmaci anti-epilettici (anti-epileptic drugs, AEDs) non determinano controllo delle crisi in circa un terzo dei pazienti con epilessia. Quando si parla di epilessia, inoltre, sarebbe necessario tener presente la moltitudine di disturbi neurologici e comorbidità a essa correlate, di cui spesso nemmeno i pazienti parlano, per il timore del profondo stigma presente. Durante il mio percorso di dottorato ho focalizzato l’attenzione su alcuni dei maggiori bisogni ancora oggi presenti in epilessia, applicando approcci tradizionali e alcuni più innovativi (genetica dei sistemi). Ciò di cui mi sono occupata è stato: identificare biomarcatori di epilettogenesi, in grado di identificare preventivamente quegli individui (10-20% circa) a rischio di sviluppare epilessia, a seguito di un insulto epilettogeno quale trauma cranico o stato epilettico; studiare nuovi approcci terapeutici potenzialmente utili in caso di farmaco-resistenza, valutando l’utilizzo di tecnologie innovative, che permettessero di somministrare direttamente nel focus epilettogeno alcune sostanze che, altrimenti, non sarebbero in grado di oltrepassare la barriera emato-encefalica; valutare gli effetti di approcci terapeutici sulle comorbidità di epilessia, spesso non trattate dai comuni AEDs utilizzati. Comorbidità di epilessia: il gene codificante la Sestrina 3 (SESN3) è stato identificato come regolatore di un network di geni pro-epilettici, sfruttando i principi della genetica dei sistemi: questi geni sono risultati infatti up-regolati in campioni di ippocampo di pazienti con epilessia del lobo temporale (TLE). Per prima cosa sono stati generati ratti SESN3 knocked-out (SESN3-KO), per permetterci di indagare a fondo sulle implicazioni di questo gene su epilessia e sue comorbidità. I nostri risultati dimostrano che gli animali SESN3-KO siano meno suscettibili all’induzione di Stato Epilettico (SE) a seguito di somministrazione di agenti chemo-convulsivanti. Inoltre, è stato possibile individuare una componente di minor suscettibilità nello sviluppo di ansia negli animali SESN3-KO, a partire da P7 fino all’età adulta. Presi insieme, questi risultati suggeriscono che il codificante per Sestrina 3 sia implicato sia nello sviluppo di crisi, ma anche nelle comorbidità associate ad epilessia. Biomarcatori di epilettogenesi: le metodiche alla base della genetica dei sistemi sono state applicate anche per lo studio di biomarcatori di epilessia, nello specifico per lo studio di miRNA circolanti nel plasma. I dati, ottenuti a seguito dell’utilizzo di quattro diversi modelli di TLE, sono stati analizzati tramite il modello di meta-analisi; cinque miRNA diversi sono risultati up-regolati nel plasma di animali che, a posteriori, sarebbero diventati epilettici. Il confronto è stato svolto sia verso animali che, partendo dallo stesso tipo di insulto epilettogeno, non avrebbero sviluppato la malattia, che verso animali naive. Due di questi cinque miRNA erano già stati descritti in ambito di epilessia: il miR-129-5p e il miR-138-5p. Epilessia farmaco-resistente: dati di letteratura indicano che sia il brain-derived neurotrophic factor (BDNF) che il glial-cell derived neurotrophic factor (GDNF) possano avere azione anti-epilettica, in quanto in grado di modulare i meccanismi alla base dello sviluppo di crisi epilettiche. Questi due fattori neurotrofici, però, non possono essere somministrati per via periferica, in quanto impossibilitati ad oltrepassare la barriera emato-encefalica. Se somministrati però direttamente in ippocampo, tramite un sistema che utilizza cellule incapsulate all’interno di specifici devices, BDNF e GDNF sono in grado di modulare e diminuire la frequenza delle crisi epilettiche nel modello di TLE indotto da pilocarpina. Oltre al risultato positivo sulle crisi epilettiche, abbiamo inoltre osservato un miglioramento dell’impairment cognitivo, evidente in fase cronica di epilessia.
microRNAs, gene networks, cell therapy: promises and challenges for treating epilepsies and their comorbidities
LOVISARI, FRANCESCA
2020
Abstract
Anti-epileptic drugs (AEDs) do not control seizures in about a third of epileptic patients. Moreover, epilepsy is not only seizures, as many may think: this disease is characterized by a plethora of neurologic and psychiatric comorbidities, that are often not even referred by the patients because of the strong stigma affecting epilepsy. In the course of my PhD, I employed classical and holistic (systems genetics) approaches to try to tackle some of the major needs in epilepsy: 1) the identification of biomarkers of epileptogenesis, capable of identifying those individuals (estimated to be 10-20%) that will develop epilepsy following exposure to an epileptogenic insult like a brain trauma or an episode of status epilepticus; these biomarkers would be instrumental for the development of preventive therapies; 2) the treatment of seizures in drug-resistant patients; in particular, I focused on strategies to deliver therapeutic molecules that cannot cross the blood-brain barrier directly in the epileptogenic area; 3) the treatment of epilepsy comorbidities, that are generally not affected (and sometimes worsened) by currently available AEDs. Epilepsy comorbidities. Using a systems genetics approach, Sestrin 3 (SESN3) was identified as a master regulator of a network of pro-epileptic genes that is up-regulated in hippocampal samples from temporal lobe epilepsy (TLE) patients. To better understand the effects of SESN3, we decided to evaluate the phenotype of SESN3-knock-out (SESN3-KO) rats, using different experimental models of TLE, and behavioral testing. As expected, SESN3-KO rats were less susceptible to chemoconvulsant-induced status epilepticus. In addition, both at P7 and at adult age, SESN3-KOs were found to have a lower tendency to anxious behaviors than wild-type animals. These results suggest an implication of SESN3 not only in seizure generation, but also in epilepsy comorbidities. Biomarkers of epileptogenesis. A systems genetics approach was also applied to investigate biomarkers of epileptogenesis, by analyzing miRNA samples in plasma. A meta-analysis of data from 4 distinct epilepsy models identified the up-regulation of five miRNAs (three of which already known) in plasma samples of animals that would subsequently become epileptic, as compared with animals that would not become epileptic in spite of receiving an identical epileptogenic insult. Two of these miRNAs, namely miR-129-5p and miR-138-5p, were previously reported to be dysregulated in brain samples from experimental models of TLE and/or surgical resection of epileptic focus in patients. Drug-resistant seizures. Brain-derived neurotrophic factor (BDNF) and glial-cell line derived neurotrophic factor (GDNF) may exert an anti-epileptic effect, because they are known to modulate mechanisms at the basis of epilepsy development and seizures occurrence. However, they cannot cross the blood-brain barrier. We found that the delivery of these neurotrophic factors directly in the hippocampi of epileptic rats by using an encapsulated cell device highly decrease the frequency of epileptic seizures. Moreover, BDNF and GDNF treatment revert the cognitive impairment observed in the chronic phase of the disease. Taken together, the data presented in this PhD thesis illustrate how traditional and new, holistic approaches can provide information on the mechanisms of epileptogenesis and contribute to the development of epilepsy treatments.File | Dimensione | Formato | |
---|---|---|---|
Francesca Lovisari_NTN2016-2019_PhD thesis.pdf
Open Access dal 13/03/2021
Descrizione: Francesca Lovisari_NTN2016-2019_PhD Thesis
Tipologia:
Tesi di dottorato
Dimensione
15.83 MB
Formato
Adobe PDF
|
15.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.