Vibration analysis provides a useful aid for monitoring many mechanical systems and industrial processes. In recent years, the vibration-based diagnosis of machines and mechanical systems has reached a satisfactory stage of maturity. Several established signal processing methodologies are now available for detecting and identifying localized faults, especially for gears and bearings. However, several questions are still open. Among them, this thesis addresses two correlated issues. On the one hand, cyclostationarity has not been explicitly used to design blind deconvolution criteria for machine diagnosis before now, although the importance to take advantage of cyclostationarity for diagnostics purpose has been widely recognized. Concurrently, the localization of a gear fault occurring in a gear located in an intermediate shaft of a multi-stage gearbox can be particularly complex due to the superposition of vibration signatures of different synchronous wheels. Nevertheless, this issue has not been investigated yet. On these grounds, this thesis has been focused on these two different but complementary facets about impulsive fault identification in rotating machines both rooted in the cyclostationary framework. The first part of the thesis focuses on a blind deconvolution method based on the generalized Rayleigh quotient and solved by means of an iterative eigenvalue decomposition algorithm. This approach is characterized by the presence of a weighting matrix that drives the deconvolution process, whereby it can be easily adapted to arbitrary criteria. A novel criterion based on the maximization of the cyclostationarity of the signal is proposed and compared with the other blind deconvolution methods existing in the literature. The proposed algorithm is extensively compared taking into account cyclostationary synthetic signals and real ones, demonstrating superior capability to recover cyclostationary sources both in stationary regimes and non-stationary regimes. This method is successfully validated for diagnostic purposes through two different experimental cases consisting of a gear tooth spall and an outer race bearing fault. The originality of this part mainly regards the introduction of a novel blind deconvolution algorithm based on a cyclostationary criterion that allows for the extraction of cyclostationary sources having a given cyclic frequency. Two original and consistent diagnostic protocols for bearing and gear diagnosis are proposed as well. In particular, these diagnostic procedures take advantage of the maximized cyclostationary criterion computed by way of the proposed blind deconvolution method allowing the diagnosis in terms of fault type and severity. The second part addresses a method for the identification of gear tooth faults occurring in a wheel located in the intermediate shaft of multi-stage gearboxes. In this context, this part introduces a methodology which combines the Empirical Mode Decomposition and the Time Synchronous Average in order to separate the first-order cyclostationary signal of the synchronous gears mounted on the same shaft into a set of representing signals of the single gears. The physical meaningful modes are selected by means of a criterion based on Pearson’s correlation coefficients and the fault detection is performed by dedicated condition indicators. The proposed methodology is exhaustively discussed and supported by simulated examples as well as two experimental datasets. This original strategy successfully identifies the faulty gear in both the experimental tests and therefore can be considered reliable for the identification of a faulty gear when the fault occurs in a shaft with multiple gears. Furthermore, two novel condition indicators sensitive to signal energy variations on the circular pitch are proposed and proved to be effective for the local gear fault detection.

La diagnosi di difetti in macchine rotanti basata sull’analisi vibrazionale ha raggiunto una soddisfacente fase di maturità, essendo disponibili numerose metodologie consolidate per la rilevazione e l’identificazione di difetti. Tuttavia, diverse problematiche restano ancora aperte; questa tesi ne prende in considerazione due. Da un lato, la ciclostazionarietà non è stata ancora utilizzata esplicitamente per progettare criteri di deconvoluzione cieca per la diagnosi di macchine rotanti, sebbene l'importanza di applicare la ciclostazionarietà per scopi diagnostici sia stata ampiamente riconosciuta. Dall’altro, la localizzazione di un difetto che si verifica in una ruota dentata installata in un albero intermedio di un riduttore a più stadi, particolarmente complessa per la sovrapposizione di più sorgenti di vibrazione, non è stata ancora oggetto di studi. In questo contesto, basandosi sulla teoria dei processi ciclostazionari, la tesi affronta questi due aspetti, differenti ma correlati e complementari, relativi all'identificazione di difetti localizzati in ingranaggi e cuscinetti volventi. La prima parte della tesi propone un metodo di deconvoluzione cieca, basato sul quoziente di Rayleigh generalizzato, risolto mediante un algoritmo iterativo di decomposizione agli autovalori. Questo approccio è caratterizzato dalla presenza di una matrice di pesatura che guida il processo di deconvoluzione, grazie alla quale il metodo può essere facilmente adattato a criteri arbitrari. Un nuovo criterio basato sulla massimizzazione della ciclostazionarietà del secondo ordine viene proposto e confrontato con altri metodi di deconvoluzione cieca esistenti in letteratura. Il confronto, effettuato su segnali simulati e segnali sperimentali, ha dimostrato che l’algoritmo è efficace nella stima delle eccitazioni ciclostazionarie a partire da risposte vibratorie sia a regimi stazionari sia a regimi non stazionari. Questo metodo è validato attraverso due diversi casi sperimentali relativi ad un rotismo ordinario a due stadi e ad un cuscinetto volvente. L'originalità di questa parte riguarda l'introduzione di un nuovo algoritmo di deconvoluzione cieca basato su di un criterio ciclostazionario che consente l'estrazione di sorgenti ciclsotazionarie aventi una determinata frequenza ciclica. Sulla base di questo metodo, sono proposti inoltre due procedure originali per la diagnosi di cuscinetti e ingranaggi. In particolare, queste procedure si basano sul criterio ciclostazionario massimizzato mediante il metodo di deconvoluzione cieca che consente la diagnosi del difetto in termini di tipologia e di severità. La seconda parte riguarda lo sviluppo e la validazione di un metodo per l'identificazione di difetti localizzati presenti in una ruota dentata calettata su un albero intermedio di un rotismo ordinario multi-stadio. In questo contesto, si propone una metodologia che combina la Empirical Mode Decomposition e la media sincrona per separare il segnale ciclostazionario del primo ordine relativo alle ruote dentate sincrone, montate sul medesimo albero, in un insieme di segnali rappresentativi relativi alle singole ruote dentate. I modi oscillatori fisicamente significativi sono selezionati attraverso un criterio basato sui coefficienti di correlazione di Pearson. Il rilevamento dei guasti viene eseguito successivamente mediante indicatori di condizione dedicati. In aggiunta agli indicatori di condizione standard, sono proposti due nuovi indicatori di condizione sensibili alle variazioni di energia del segnale sul passo della ruota, che si sono dimostrati particolarmente efficaci per il rilevamento dei difetti localizzati. L’efficacia della metodologia proposta è esaurientemente discussa mediante l’applicazione a segnali simulati e da due set di dati sperimentali. In tutti i casi esaminati, i risultati mostrano la capacità di identificare con successo la ruota difettosa nei casi di più ruote calettate sullo stesso albero.

Development and validation of Blind Deconvolution and Empirical Mode Decomposition techniques for impulsive fault diagnosis in rotating machines

BUZZONI, Marco
2018

Abstract

Vibration analysis provides a useful aid for monitoring many mechanical systems and industrial processes. In recent years, the vibration-based diagnosis of machines and mechanical systems has reached a satisfactory stage of maturity. Several established signal processing methodologies are now available for detecting and identifying localized faults, especially for gears and bearings. However, several questions are still open. Among them, this thesis addresses two correlated issues. On the one hand, cyclostationarity has not been explicitly used to design blind deconvolution criteria for machine diagnosis before now, although the importance to take advantage of cyclostationarity for diagnostics purpose has been widely recognized. Concurrently, the localization of a gear fault occurring in a gear located in an intermediate shaft of a multi-stage gearbox can be particularly complex due to the superposition of vibration signatures of different synchronous wheels. Nevertheless, this issue has not been investigated yet. On these grounds, this thesis has been focused on these two different but complementary facets about impulsive fault identification in rotating machines both rooted in the cyclostationary framework. The first part of the thesis focuses on a blind deconvolution method based on the generalized Rayleigh quotient and solved by means of an iterative eigenvalue decomposition algorithm. This approach is characterized by the presence of a weighting matrix that drives the deconvolution process, whereby it can be easily adapted to arbitrary criteria. A novel criterion based on the maximization of the cyclostationarity of the signal is proposed and compared with the other blind deconvolution methods existing in the literature. The proposed algorithm is extensively compared taking into account cyclostationary synthetic signals and real ones, demonstrating superior capability to recover cyclostationary sources both in stationary regimes and non-stationary regimes. This method is successfully validated for diagnostic purposes through two different experimental cases consisting of a gear tooth spall and an outer race bearing fault. The originality of this part mainly regards the introduction of a novel blind deconvolution algorithm based on a cyclostationary criterion that allows for the extraction of cyclostationary sources having a given cyclic frequency. Two original and consistent diagnostic protocols for bearing and gear diagnosis are proposed as well. In particular, these diagnostic procedures take advantage of the maximized cyclostationary criterion computed by way of the proposed blind deconvolution method allowing the diagnosis in terms of fault type and severity. The second part addresses a method for the identification of gear tooth faults occurring in a wheel located in the intermediate shaft of multi-stage gearboxes. In this context, this part introduces a methodology which combines the Empirical Mode Decomposition and the Time Synchronous Average in order to separate the first-order cyclostationary signal of the synchronous gears mounted on the same shaft into a set of representing signals of the single gears. The physical meaningful modes are selected by means of a criterion based on Pearson’s correlation coefficients and the fault detection is performed by dedicated condition indicators. The proposed methodology is exhaustively discussed and supported by simulated examples as well as two experimental datasets. This original strategy successfully identifies the faulty gear in both the experimental tests and therefore can be considered reliable for the identification of a faulty gear when the fault occurs in a shaft with multiple gears. Furthermore, two novel condition indicators sensitive to signal energy variations on the circular pitch are proposed and proved to be effective for the local gear fault detection.
DALPIAZ, Giorgio
TRILLO, Stefano
File in questo prodotto:
File Dimensione Formato  
thesis_buzzoni.pdf

accesso aperto

Descrizione: Tesi
Tipologia: Tesi di dottorato
Dimensione 34.47 MB
Formato Adobe PDF
34.47 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2478776
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact