The Motor Current Signature Analysis (MCSA) is a research area focused on the diagnosis of components of electric motors based on post-processing of the current signal mainly. In particular, the bearing diagnostics is based on two different assumptions: the fault on the bearing causes a vibration of the shaft it supports, so there is an air gap variation between stator and rotor causing a modulation in the current signal; the fault on the bearing hinders the rotation of the shaft, so it can be modeled as an additional loading torque that the motor satisfies increasing the current signal. In this paper, a cyclic-non-stationarity analysis of the motor current is used to assess the status of ball-bearings in servomotors, running at variable speed. Both speed of the motor and motor current are provided by the control loop of the servomotor, that is no external sensors are used. The cyclic nature of the application allows an average of the cyclic-cyclic order maps to increase the signal-to-noise ratio. The proposed technique is successfully applied to both healthy and faulty bearings.

Motor Current Cyclic-Non-Stationary Analysis for Bearing Diagnostic

G. D’Elia
Primo
;
E. Mucchi;G. Dalpiaz
Penultimo
;
2020

Abstract

The Motor Current Signature Analysis (MCSA) is a research area focused on the diagnosis of components of electric motors based on post-processing of the current signal mainly. In particular, the bearing diagnostics is based on two different assumptions: the fault on the bearing causes a vibration of the shaft it supports, so there is an air gap variation between stator and rotor causing a modulation in the current signal; the fault on the bearing hinders the rotation of the shaft, so it can be modeled as an additional loading torque that the motor satisfies increasing the current signal. In this paper, a cyclic-non-stationarity analysis of the motor current is used to assess the status of ball-bearings in servomotors, running at variable speed. Both speed of the motor and motor current are provided by the control loop of the servomotor, that is no external sensors are used. The cyclic nature of the application allows an average of the cyclic-cyclic order maps to increase the signal-to-noise ratio. The proposed technique is successfully applied to both healthy and faulty bearings.
2020
9789082893113
File in questo prodotto:
File Dimensione Formato  
2020 ISMA_DE CC Strozzi MU GD RB Current Bearings.pdf

solo gestori archivio

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 7.14 MB
Formato Adobe PDF
7.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Proceedings_ISMA-USD2020-split2.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 12.67 MB
Formato Adobe PDF
12.67 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2440137
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact