The Traveling Salesperson Problem (TSP) is a well-known problem addressed in the literature through various techniques, including Integer Linear Programming, Constraint Programming (CP) and Local Search. Many real life instances belong to the subclass of Euclidean TSPs, in which the nodes to be visited are associated with points in the Euclidean plane, and the distance between them is the Euclidean distance. A well-known property of the Euclidean TSP is that no crossings can exist in an optimal solution. In a previous publication, we exploited this property to speedup the solution of Euclidean instances in CP, by imposing a number of so-called no-overlapping constraints. The number of imposed constraints is quadratic in the number of nodes of the TSP. In this work, we observe that not all the no-overlapping constraints are equally useful: by experimental analysis, some of them provide a speedup, while others only introduce overhead. We use a supervised machine learning approach on them to learn a binary classifier, with the objective to impose only those no-overlapping constraints that have been classified as effective. Preliminary experiments support the validity of the idea.

Improving the efficiency of euclidean TSP solving in constraint programming by predicting effective nocrossing constraints

Bellodi E.
Primo
;
Bertagnon A.
Secondo
;
Gavanelli M.
Penultimo
;
Zese R.
Ultimo
2020

Abstract

The Traveling Salesperson Problem (TSP) is a well-known problem addressed in the literature through various techniques, including Integer Linear Programming, Constraint Programming (CP) and Local Search. Many real life instances belong to the subclass of Euclidean TSPs, in which the nodes to be visited are associated with points in the Euclidean plane, and the distance between them is the Euclidean distance. A well-known property of the Euclidean TSP is that no crossings can exist in an optimal solution. In a previous publication, we exploited this property to speedup the solution of Euclidean instances in CP, by imposing a number of so-called no-overlapping constraints. The number of imposed constraints is quadratic in the number of nodes of the TSP. In this work, we observe that not all the no-overlapping constraints are equally useful: by experimental analysis, some of them provide a speedup, while others only introduce overhead. We use a supervised machine learning approach on them to learn a binary classifier, with the objective to impose only those no-overlapping constraints that have been classified as effective. Preliminary experiments support the validity of the idea.
2020
Constraint Programming; Euclidean TSP; Supervised Machine Learning
File in questo prodotto:
File Dimensione Formato  
paper6.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 5.16 MB
Formato Adobe PDF
5.16 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2439275
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact