Markov Chain Monte Carlo (MCMC) methods are a class of algorithms used to perform approximate inference in probabilistic models. When direct sampling from a probability distribution is difficult, MCMC algorithms provide accurate results by constructing a Markov chain that gradually approximates the desired distribution. In this paper we describe and compare the performances of two MCMC sampling algorithms, Gibbs sampling and Metropolis Hastings sampling, with rejection sampling for probabilistic logic programs. In particular, we analyse the relation between execution time and number of samples and how fast each algorithm converges.

A Comparison of MCMC Sampling for Probabilistic Logic Programming

Azzolini D.
;
Riguzzi F.
;
Lamma E.
2019

Abstract

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms used to perform approximate inference in probabilistic models. When direct sampling from a probability distribution is difficult, MCMC algorithms provide accurate results by constructing a Markov chain that gradually approximates the desired distribution. In this paper we describe and compare the performances of two MCMC sampling algorithms, Gibbs sampling and Metropolis Hastings sampling, with rejection sampling for probabilistic logic programs. In particular, we analyse the relation between execution time and number of samples and how fast each algorithm converges.
2019
978-3-030-35165-6
978-3-030-35166-3
Approximate inference; Markov Chain Monte Carlo; Probabilistic Logic Programming
File in questo prodotto:
File Dimensione Formato  
paper.pdf

solo gestori archivio

Descrizione: articolo
Tipologia: Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 332.14 kB
Formato Adobe PDF
332.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
09_aixia_2019.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 367.8 kB
Formato Adobe PDF
367.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2418823
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact