Markov Chain Monte Carlo (MCMC) methods are a class of algorithms used to perform approximate inference in probabilistic models. When direct sampling from a probability distribution is difficult, MCMC algorithms provide accurate results by constructing a Markov chain that gradually approximates the desired distribution. In this paper we describe and compare the performances of two MCMC sampling algorithms, Gibbs sampling and Metropolis Hastings sampling, with rejection sampling for probabilistic logic programs. In particular, we analyse the relation between execution time and number of samples and how fast each algorithm converges.
A Comparison of MCMC Sampling for Probabilistic Logic Programming
Azzolini D.
;Riguzzi F.
;Lamma E.
2019
Abstract
Markov Chain Monte Carlo (MCMC) methods are a class of algorithms used to perform approximate inference in probabilistic models. When direct sampling from a probability distribution is difficult, MCMC algorithms provide accurate results by constructing a Markov chain that gradually approximates the desired distribution. In this paper we describe and compare the performances of two MCMC sampling algorithms, Gibbs sampling and Metropolis Hastings sampling, with rejection sampling for probabilistic logic programs. In particular, we analyse the relation between execution time and number of samples and how fast each algorithm converges.File | Dimensione | Formato | |
---|---|---|---|
paper.pdf
solo gestori archivio
Descrizione: articolo
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
332.14 kB
Formato
Adobe PDF
|
332.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
09_aixia_2019.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
367.8 kB
Formato
Adobe PDF
|
367.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.