Buildings play a significant role in the global energy balance. Typically, they account for 20-30% of the total primary energy requirement of industrialized countries, 40% in EU. Applying the proposed integrated RES to buildings is an important application for wider integration and deployment of renewable energy and to achieving our binding EU targets of at least a 40% reduction in greenhouse gas emissions (GHG) by 2030, compared to 1990 and at least 27% of renewable energy in EU. The IDEAS project will create an innovative building integrated renewable energy system (RES) which will cost effectively exceed current RES efficiencies, generating electricity, heat and cooling and optimised for multifamily, public and commercial buildings in different climatic conditions. The research aim is to create a novel low-cost building integrated RES maximizing the output tuneable for different climatic conditions through novel luminescent and geometric concentrator techniques leading to current solar system efficiencies being exceeded electrically. Thermally enhancement will be achieved using enhanced organic phase change materials (PCM) with a passive biomimetic heat transfer mechanism for heat storage and discharge. An electrically driven multi-source heat pumpHP system will then use the main energy sources at building scale (waste heat from the system, air and ground), to provide the input to an integrated underfloor heating and hot water system, and to manage the thermal energy storage. This building integrated RES will use advanced control techniques to maximize performance and electrical and thermal/cooling self-sufficiency in the building. The technology will be optimized and demonstrated for use in multi-family residential buildings, commercial and public buildings.

Novel building Integration Designs for increased Efficiencies in Advanced Climatically Tunable Renewable Energy Systems

Donato Vincenzi
Secondo
Membro del Collaboration Group
;
michele bottarelli
Primo
Membro del Collaboration Group
;
micol boschetti
Membro del Collaboration Group
;
giulio mangherini
Membro del Collaboration Group
;
paolo bernardoni
Membro del Collaboration Group
2019

Abstract

Buildings play a significant role in the global energy balance. Typically, they account for 20-30% of the total primary energy requirement of industrialized countries, 40% in EU. Applying the proposed integrated RES to buildings is an important application for wider integration and deployment of renewable energy and to achieving our binding EU targets of at least a 40% reduction in greenhouse gas emissions (GHG) by 2030, compared to 1990 and at least 27% of renewable energy in EU. The IDEAS project will create an innovative building integrated renewable energy system (RES) which will cost effectively exceed current RES efficiencies, generating electricity, heat and cooling and optimised for multifamily, public and commercial buildings in different climatic conditions. The research aim is to create a novel low-cost building integrated RES maximizing the output tuneable for different climatic conditions through novel luminescent and geometric concentrator techniques leading to current solar system efficiencies being exceeded electrically. Thermally enhancement will be achieved using enhanced organic phase change materials (PCM) with a passive biomimetic heat transfer mechanism for heat storage and discharge. An electrically driven multi-source heat pumpHP system will then use the main energy sources at building scale (waste heat from the system, air and ground), to provide the input to an integrated underfloor heating and hot water system, and to manage the thermal energy storage. This building integrated RES will use advanced control techniques to maximize performance and electrical and thermal/cooling self-sufficiency in the building. The technology will be optimized and demonstrated for use in multi-family residential buildings, commercial and public buildings.
2019
In corso di stampa
Internazionale
Responsabile di Unità locale
EU - H2020
Vincenzi, Donato; Bottarelli, Michele; Boschetti, Micol; Mangherini, Giulio; Bernardoni, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2417302
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact