A methodology is developed for fatigue driven shape optimization of industrial mechanical components by means of mesh morphing. The methodology is integrated in commercial software platforms to increase its productivity and performance in industrial applications. It is well known that shape optimization is a way to improve the structural performance of components, yet it is mostly applied to linear elastic load cases. The idea of including fatigue analysis into the optimization process is of great interest for mechanical components design. Tools based on parametric geometries are becoming standard for fine-tuning optimization processes in industry. These tools can handle multiaxial fatigue analysis, but they are limited by difficulties in maintaining geometry coherence. The use of finite element models in place of parametric geometries results in a faster and more flexible methodology. In fact, mesh morphing avoids geometry coherence problems and the need of re-meshing. The aim of this work is the integration of mesh morphing and multiaxial fatigue in the context of shape optimization. A tool for achieving this was created and is presented here together with its application to part of a cast iron component subject to multi-axial high-cycle fatigue. The results obtained with the proposed methodology are closer to the industrial needs than those that can be obtained from shape optimization based on structure stiffness alone.

Mesh morphing and fatigue analysis integration: A way to increase the industrial productivity and performance with shape optimization

CAVAZZUTI, Marco
2014

Abstract

A methodology is developed for fatigue driven shape optimization of industrial mechanical components by means of mesh morphing. The methodology is integrated in commercial software platforms to increase its productivity and performance in industrial applications. It is well known that shape optimization is a way to improve the structural performance of components, yet it is mostly applied to linear elastic load cases. The idea of including fatigue analysis into the optimization process is of great interest for mechanical components design. Tools based on parametric geometries are becoming standard for fine-tuning optimization processes in industry. These tools can handle multiaxial fatigue analysis, but they are limited by difficulties in maintaining geometry coherence. The use of finite element models in place of parametric geometries results in a faster and more flexible methodology. In fact, mesh morphing avoids geometry coherence problems and the need of re-meshing. The aim of this work is the integration of mesh morphing and multiaxial fatigue in the context of shape optimization. A tool for achieving this was created and is presented here together with its application to part of a cast iron component subject to multi-axial high-cycle fatigue. The results obtained with the proposed methodology are closer to the industrial needs than those that can be obtained from shape optimization based on structure stiffness alone.
2014
9789609999465
Durability design; Fatigue; Industrial application; Mesh morphing; Shape optimization; Computer Science Applications1707 Computer Vision and Pattern Recognition; Software; Engineering (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2414266
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact