Gradient Projection (GP) methods are a very popular tool to address box-constrained quadratic problems thanks to their simple implementation and low computational cost per iteration with respect, for example, to Newton approaches. It is however possible to include, in GP schemes, some second order information about the problem by means of a clever choice of the steplength parameter which controls the decrease along the anti-gradient direction. Borrowing the analysis developed by Barzilai and Borwein (BB) for an unconstrained quadratic programming problem, in 2012 Roger Fletcher proposed a limited memory steepest descent (LMSD) method able to effectively sweep the spectrum of the Hessian matrix of the quadratic function to optimize. In this work we analyze how to extend the Fletcher’s steplength selection rule to GP methods employed to solve box-constrained quadratic problems. Particularly, we suggest a way to take into account the lower and the upper bounds in the steplength definition, providing also a theoretical and numerical evaluation of our approach.

A Limited Memory Gradient Projection Method for Box-Constrained Quadratic Optimization Problems

Serena Crisci
Primo
;
Valeria Ruggiero
Penultimo
;
2020

Abstract

Gradient Projection (GP) methods are a very popular tool to address box-constrained quadratic problems thanks to their simple implementation and low computational cost per iteration with respect, for example, to Newton approaches. It is however possible to include, in GP schemes, some second order information about the problem by means of a clever choice of the steplength parameter which controls the decrease along the anti-gradient direction. Borrowing the analysis developed by Barzilai and Borwein (BB) for an unconstrained quadratic programming problem, in 2012 Roger Fletcher proposed a limited memory steepest descent (LMSD) method able to effectively sweep the spectrum of the Hessian matrix of the quadratic function to optimize. In this work we analyze how to extend the Fletcher’s steplength selection rule to GP methods employed to solve box-constrained quadratic problems. Particularly, we suggest a way to take into account the lower and the upper bounds in the steplength definition, providing also a theoretical and numerical evaluation of our approach.
2020
9783030390808
Quadratic programming, Gradient projection methods, Steplength selection rule, Ritz-like values
File in questo prodotto:
File Dimensione Formato  
478615_1_En_15_Chapter_OnlinePDF.pdf

solo gestori archivio

Descrizione: Full text ahead of print
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.25 MB
Formato Adobe PDF
3.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
978-3-030-39081-5 (1).pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.57 MB
Formato Adobe PDF
4.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2413818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact