Dark matter (DM) represents one of the most intriguing challenges of modern physics, both for the theoretical predictions and for the experimental setups. The search for the possible DM component candidates regards a wide range of objects and of energy values. In order to detect processes related to very weak interactions, as expected in these cases, it is necessary to improve the performances of the available detectors making them more efficient in terms of energy threshold and mass. Here we present a research activity aimed at the development of a novel type of detector based on laser interrogation of atomic energy levels for species that have been loaded in a solid matrix of a non interacting material at very low temperatures. The laser assisted transitions are only promoted when an incident particle is absorbed in the material, releasing its energy to the embedded atoms. The detection can be obtained via both optical and electronic methods.

Dark matter search by laser spectroscopy

Guarise, M.;Calabrese, R.;Khanbekyan, A.;Luppi, E.;Tomassetti, L.;
2019

Abstract

Dark matter (DM) represents one of the most intriguing challenges of modern physics, both for the theoretical predictions and for the experimental setups. The search for the possible DM component candidates regards a wide range of objects and of energy values. In order to detect processes related to very weak interactions, as expected in these cases, it is necessary to improve the performances of the available detectors making them more efficient in terms of energy threshold and mass. Here we present a research activity aimed at the development of a novel type of detector based on laser interrogation of atomic energy levels for species that have been loaded in a solid matrix of a non interacting material at very low temperatures. The laser assisted transitions are only promoted when an incident particle is absorbed in the material, releasing its energy to the embedded atoms. The detection can be obtained via both optical and electronic methods.
2019
9781510627680
Dark Matter; Laser Spectroscopy; Cryogenics; Matrix Isolation Technique;; Single particle detectors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2409031
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact