In this contribution we measure the computing and energy performance of the recently developed DAVIDE HPC-cluster, a massively parallel machine based on IBM POWER CPUs and NVIDIA Pascal GPUs. We use as an application benchmark the OpenStaPLE Lattice QCD code, written using the OpenACC programming framework. Our code exploits the computing performance of GPUs through the use of OpenACC directives, and uses OpenMPI to manage the parallelism among several GPUs. We analyze the speed-up and the aggregate performance of the code, and try to identify possible bottlenecks that harm performances. Using the power monitor tools available on DAVIDE we also discuss some energy aspects pointing out the best trade-offs between time-to-solution and energy-to-solution.

Early Experience on Running OpenStaPLE on DAVIDE

Calore E.
;
Schifano S. F.;Tripiccione R.
Ultimo
2018

Abstract

In this contribution we measure the computing and energy performance of the recently developed DAVIDE HPC-cluster, a massively parallel machine based on IBM POWER CPUs and NVIDIA Pascal GPUs. We use as an application benchmark the OpenStaPLE Lattice QCD code, written using the OpenACC programming framework. Our code exploits the computing performance of GPUs through the use of OpenACC directives, and uses OpenMPI to manage the parallelism among several GPUs. We analyze the speed-up and the aggregate performance of the code, and try to identify possible bottlenecks that harm performances. Using the power monitor tools available on DAVIDE we also discuss some energy aspects pointing out the best trade-offs between time-to-solution and energy-to-solution.
2018
978-3-030-02464-2
978-3-030-02465-9
LQCD; NVLink; OpenACC; POWER8
File in questo prodotto:
File Dimensione Formato  
978-3-030-02465-9 (1).pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2405280
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact