The Po river basin, located in Northern Italy, is considered one of the most important emissive area in Europe, characterized by high concentration of both natural and anthropogenic aerosol and trace gases. The geographical location of this region, in proximity of the Sahara desert, makes it often subject to long range dust transport and, being surrounded by two mountain ranges, to frequent occurrence of stagnant meteorological conditions that can lead to the accumulation of local pollution (coming especially from traffic, residential combustion, and agriculture). Under some particular conditions such pollution may flow toward the Mediterranean basin. The spatial distribution of pollutants concentration and composition over the area is therefore often complex and variable in space and time, being strongly influenced by the interplay of the variety of sources and transport regimes that may affect the area. This thesis offers an analysis of the impact of different atmospheric transport regimes on the vertical aerosol variability in the lower troposphere, integrating a large ensamble of observations and different state-of-the-art atmospheric model. Such variability is investigated during summer 2012, following the temporal and vertical evolution of aerosol and pollutants individuated by an in-depth analysis of optical, physical and chemical parameters derived from a novel and unique database of intensive in-situ and remote sensing measurements. Particular focus was given to LIDAR profiles that were taken at San Pietro Capofiume (SPC, 44°39'0" N, 11°37'0" E, 11m a.s.l, located in a rural area relatively close to some major urban and industrial emissive areas) and are used to investigate the vertical distribution of aerosol and their optical properties. Measurements from Aerodynamical Particle Sizer (APS) at SPC and Optical Particle Counter (OPC) at the Monte Cimone WMO/GAW Global Station (MTC; 44.12N, 10.42E, 2165 m a.s.l., representative of the background conditions of the South European free troposphere) provide information on the size distribution of aerosol respectively at the ground and near free troposphere. MARGA instrument in SPC allows determining the chemical nature of the particles at the ground. Circulation and transport analysis was then supported by stateof-the-art mesoscale model WRF and lagrangian simulation (FLEXPART) run with Global Forecast System (GFS) meteo input. The intensive observational phase (15th June – 5th July 2012) was characterized by different regimes of regional-scale tropospheric transport and conditions of deep convective Planetary Boundary Layer (PBL). Particles were mostly individuated below 2000m, with a prevalence of spherical aerosol, observed with an occurrence of more than the 80% throughout the day. Two events of mineral dust advection from northern Africa (19th June – 21th June and 29th June – 2nd July) were identified, with evidence of intrusion into the PBL and mixing with local pollution aerosol. Dust is observed prevalently above 2000m with a frequency between 15% and 20% of the overall measurements campaign, reaching the ground with a non negligible occurrence (around 7%). Moreover, LIDAR observations highlighted, during early hours of the morning, an increase of spherical particles below 500 m height possibly related to the hygroscopic growth of pollution aerosols in high relative humidity conditions. Events of rapid formation of non spherical particles, likely originated from rural soil particle resuspension, were observed under conditions of fully developed PBL, with a frequency of occurrence of around 50% during afternoon-evening hours. During the observation period two events of pollution outflow (23th-24th June and 26th-27th June) from the Po Valley to the Western Mediterranean basin were identified and characterized with in-situ observations and mesoscale chemistry models. In correspondence of meteorological conditions favourable to the export from the PoValley, aircraft observations, performed in the frame of the french ChaRMex-TRAQA campaign, show an enhancement in the mixing ratio value of carbon monoxide (CO) (from a background value of 90 ppbv to 120-140 ppbv) below 1500 m height over the area of the Gulf of Genoa. The WRF-CHEM model, that run with fully coupled chemistry, was adopted to characterize the CO distribution in the whole area and support the identification of the possible export of polluted air from North Italy. WRF-CHEM simulations confirmed the presence of a CO plume originating from the Po Valley during the two events of outflow identified by the aircrafts. The dynamic of the plume is investigated by Lagrangian simulations (FLEXPART-WRF): trajectories indicated a transport time between 12 and 30 hours from the Po Valley to the Gulf of Genoa with plumes patterns and vertical and horizontal extension in agreement with the aircraft observations. The coupling of the trajectories to the CO concentrations from the WRFCHEM model shows that, during outflow events, perturbations of more than 30-50 ppbv are expected in the Mediterranean basin. Again these values agree with the observed enhancement in CO. Finally, the contribution from Po Valley outflow has been estimated for the whole 2012 year using the forward FLEXPART-WRF simulations. Results show that export occurs frequently throughout the year with a maximum occurrence during cold months, in particular during February and November-December, when the outflow plume can be transported Southward, up to 42°N, influencing large part of the Gulf of Genoa. The local contribution brought by the CO events analysed here appears representative of the typical local CO enhancement caused by the export plumes throughout the year.

Il bacino del Po, situato in Nord Italia, è considerato una delle più importanti zone emissive dell'Europa, essendo caratterizzato da alte concentrazioni di aerosol di origine naturale e antropogenica e di gas traccianti. La posizione geografica di tale regione, in prossimità del deserto del Sahara, la rende spesso soggetta ad eventi di trasporto di particolato su lunga distanza e, essendo circondata da due catene montuose, a frequenti condizioni meteorologiche di stagnazione che possono causare l'accumulazione di inquinamento locale (proveniente soprattutto da traffico, combustione in ambito domestico e agricoltura). Sotto particolari condizioni tali inquinanti possono essere trasportati verso il bacino Mediterraneo. La distribuzione spaziale della concentrazione e composizione degli inquinanti sulla regione può essere quindi complessa e variabile, essendo anche fortemente influenzata dall'interazione della varietà di sorgenti e regimi di trasporto che possono interessare l'area. Questo lavoro di tesi offre un'analisi dell'impatto di differenti regimi di trasporto atmosferico sulla variabilità verticale nella bassa troposfera, basandosi sull’ integrazione di un vasto database di osservazioni con i risultati delle simulazioni di modelli numerici. Tale variabilità è stata studiata durante l'estate 2012, seguendo l'evoluzione temporale e verticale di aerosol e inquinanti individuata tramite un'approfondita analisi di parametri ottici, fisici e chimici derivanti da un innovativo ed unico database di misure intensive sia in-situ che di telerilevamento. Particolare rilievo è stato dato ai profili LIDAR misurati a San Pietro Capofiume (SPC, 44°39'0" N, 11°37'0" E, 11m s.l.m, posizionato in un'area rurale relativamente vicina ad alcune maggiori zone emissive urbane ed industriali), utilizzati per analizzare la distribuzione verticale degli aerosol e le loro proprietà ottiche. Le misure dell' Aerodynamical Particle Sizer (APS) a SPC e dell' Optical Particle Counter (OPC) posizionato nella stazione WMO/GAW di Monte Cimone (MTC; 44.12N, 10.42E, 2165 m s.l.m., rappresentativa delle condizioni di background della troposfera libera del Sud Europa) hanno invece fornito informazioni sulla distribuzione dimensionale dell'aerosol rispettivamente al suolo e a quote prossime alla troposfera libera. Lo strumento MARGA a SPC ha consentito di determinare la natura chimica delle particelle al suolo. L'analisi della circolazione atmosferica e del trasporto è stata poi supportata da modelli di ultima generazione come il modello a mesoscala WRF e simulazioni lagrangiane (FLEXPART) guidate da input meteorologici GFS (Global Forecast System). Il periodo di osservazioni intensive (15 Giugno - 5 Luglio 2012) è stato caratterizzato da differenti regimi di trasporto troposferici a scala regionale e condizioni di profonda convezione nello strato limite planetario (PBL). Il particolato è stato individuato prevalentemente sotto i 2000m, con una predominanza di aerosol sferico, osservato con una frequenza superiore all'80% durante l'intero arco della giornata. Due eventi di avvezione di particolato desertico dal Nord Africa (19-21 Giugno e 29 Giugno - 2 Luglio) sono stati identificati, con evidenza di penetrazione dell'aerosol desertico nel PBL e mescolamento con gli aerosol inquinanti locali. Il particolato desertico è stato osservato prevalentemente al di sopra dei 2000m con una frequenza di osservazione tra il 15% e il 20% dell'intera campagna, e una frequenza non trascurabile al suolo (circa 7%). Le osservazioni LIDAR hanno inoltre evidenziato, durante le prime ore della mattina, un aumento delle particelle sferiche al di sotto dei 500m di altezza, probabilmente legati alla crescita igroscopica di inquinanti aerosolici in alte condizioni di umidità relativa. Eventi di formazione rapida di particelle non sferiche, verosimilmente originate dalla risospensione di particolato da suoli rurali, sono stati osservati in corrispondenza di condizioni di PBL pienamente sviluppato con una frequenza di occorrenza del 50% durante le ore pomeridiane-serali. Durante il periodo di osservazione sono stati individuati due eventi di esporto di inquinamento (23-24 Giugno e 26-27 Giugno) dalla Valle del Po al bacino Mediterraneo e sono stati caratterizzati con osservazioni in-situ e modelli di chimica a mesoscala. In corrispondenza di condizioni meteorologiche favorevoli all'esporto dalla Valle del Po, le osservazioni da aereo raccolte nell'ambito della campagna di misura francese ChaRMex-TRAQA mostrano un aumento nei valori di mixing ratio del monossido di carbonio (CO) da un valore di fondo di 90 ppbv a concentrazioni di 120-140 ppbv al di sotto dei 1500 m di altezza sul Golfo di Genova. Il modello WRF-CHEM, che lavora con processi di chimica pienamente accoppiati alla meteorologia, è stato utilizzato per caratterizzare la distribuzione di CO nell'intera area, a supporto dell'identificazione del possibile esporto di aria dal Nord Italia. Le simulazioni WRF-CHEM hanno confermato la presenza di un pennacchio di CO originato dalla Valle del Po durante i due eventi di esporto identificati dalle misure da aereo. La dinamica del pennacchio è stata analizzata per mezzo di simulazioni lagrangiane (FLEXPART-WRF): le traiettorie hanno indicato un tempo di trasporto tra le 12 e le 30 ore tra la Valle del Po al Golfo di Genova con un percorso e un'estensione verticale ed orizzontale in accordo con le osservazioni da aereo. Accoppiando le traiettorie con le concentrazioni di CO ottenute da WRF-CHEM si è stimata, durante gli eventi di esporto, una perturbazione superiore ai 30-50 ppbv sul Mediterreano con valori di nuovo in accordo con le misure aeree. Infine il contributo del trasporto di inquinamento dalla Valle del Po è stato valutato sull'intero anno 2012 per mezzo delle simulazioni FLEXPART-WRF. I risultati hanno mostrato che l'esporto avviene frequentemente durante l'anno, con un massimo di frequenza durante i mesi freddi, in particolare durante Febbraio e Novembre-Dicembre, quando il pennacchio di inquinamento può essere trasportato verso Sud, arrivando anche fino ai 42°N e influenzando quindi gran parte del Golfo di Genova. Il contributo locale causato dall'evento di CO analizzato dai voli appare rappresentativo della tipica anomalia locale causata dai pennacchi di esporto dalla Valle del Po durante l'intero anno.

Dispersion and transport of tropospheric aerosol and pollutants in the western mediterranean: the role of the Po Valley under different transport regimes

BUCCI, Silvia
2016

Abstract

The Po river basin, located in Northern Italy, is considered one of the most important emissive area in Europe, characterized by high concentration of both natural and anthropogenic aerosol and trace gases. The geographical location of this region, in proximity of the Sahara desert, makes it often subject to long range dust transport and, being surrounded by two mountain ranges, to frequent occurrence of stagnant meteorological conditions that can lead to the accumulation of local pollution (coming especially from traffic, residential combustion, and agriculture). Under some particular conditions such pollution may flow toward the Mediterranean basin. The spatial distribution of pollutants concentration and composition over the area is therefore often complex and variable in space and time, being strongly influenced by the interplay of the variety of sources and transport regimes that may affect the area. This thesis offers an analysis of the impact of different atmospheric transport regimes on the vertical aerosol variability in the lower troposphere, integrating a large ensamble of observations and different state-of-the-art atmospheric model. Such variability is investigated during summer 2012, following the temporal and vertical evolution of aerosol and pollutants individuated by an in-depth analysis of optical, physical and chemical parameters derived from a novel and unique database of intensive in-situ and remote sensing measurements. Particular focus was given to LIDAR profiles that were taken at San Pietro Capofiume (SPC, 44°39'0" N, 11°37'0" E, 11m a.s.l, located in a rural area relatively close to some major urban and industrial emissive areas) and are used to investigate the vertical distribution of aerosol and their optical properties. Measurements from Aerodynamical Particle Sizer (APS) at SPC and Optical Particle Counter (OPC) at the Monte Cimone WMO/GAW Global Station (MTC; 44.12N, 10.42E, 2165 m a.s.l., representative of the background conditions of the South European free troposphere) provide information on the size distribution of aerosol respectively at the ground and near free troposphere. MARGA instrument in SPC allows determining the chemical nature of the particles at the ground. Circulation and transport analysis was then supported by stateof-the-art mesoscale model WRF and lagrangian simulation (FLEXPART) run with Global Forecast System (GFS) meteo input. The intensive observational phase (15th June – 5th July 2012) was characterized by different regimes of regional-scale tropospheric transport and conditions of deep convective Planetary Boundary Layer (PBL). Particles were mostly individuated below 2000m, with a prevalence of spherical aerosol, observed with an occurrence of more than the 80% throughout the day. Two events of mineral dust advection from northern Africa (19th June – 21th June and 29th June – 2nd July) were identified, with evidence of intrusion into the PBL and mixing with local pollution aerosol. Dust is observed prevalently above 2000m with a frequency between 15% and 20% of the overall measurements campaign, reaching the ground with a non negligible occurrence (around 7%). Moreover, LIDAR observations highlighted, during early hours of the morning, an increase of spherical particles below 500 m height possibly related to the hygroscopic growth of pollution aerosols in high relative humidity conditions. Events of rapid formation of non spherical particles, likely originated from rural soil particle resuspension, were observed under conditions of fully developed PBL, with a frequency of occurrence of around 50% during afternoon-evening hours. During the observation period two events of pollution outflow (23th-24th June and 26th-27th June) from the Po Valley to the Western Mediterranean basin were identified and characterized with in-situ observations and mesoscale chemistry models. In correspondence of meteorological conditions favourable to the export from the PoValley, aircraft observations, performed in the frame of the french ChaRMex-TRAQA campaign, show an enhancement in the mixing ratio value of carbon monoxide (CO) (from a background value of 90 ppbv to 120-140 ppbv) below 1500 m height over the area of the Gulf of Genoa. The WRF-CHEM model, that run with fully coupled chemistry, was adopted to characterize the CO distribution in the whole area and support the identification of the possible export of polluted air from North Italy. WRF-CHEM simulations confirmed the presence of a CO plume originating from the Po Valley during the two events of outflow identified by the aircrafts. The dynamic of the plume is investigated by Lagrangian simulations (FLEXPART-WRF): trajectories indicated a transport time between 12 and 30 hours from the Po Valley to the Gulf of Genoa with plumes patterns and vertical and horizontal extension in agreement with the aircraft observations. The coupling of the trajectories to the CO concentrations from the WRFCHEM model shows that, during outflow events, perturbations of more than 30-50 ppbv are expected in the Mediterranean basin. Again these values agree with the observed enhancement in CO. Finally, the contribution from Po Valley outflow has been estimated for the whole 2012 year using the forward FLEXPART-WRF simulations. Results show that export occurs frequently throughout the year with a maximum occurrence during cold months, in particular during February and November-December, when the outflow plume can be transported Southward, up to 42°N, influencing large part of the Gulf of Genoa. The local contribution brought by the CO events analysed here appears representative of the typical local CO enhancement caused by the export plumes throughout the year.
FIERLI, Federico
GUIDI, Vincenzo
File in questo prodotto:
File Dimensione Formato  
PHD_THESIS_BUCCI_SILVIA_pdfa.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Pubblico senza Copyright
Dimensione 17.14 MB
Formato Adobe PDF
17.14 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2403475
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact