The opioid receptor family comprises the classical opioid receptors mu (MOP), delta (DOP), and kappa (KOP) and a fourth member the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor that, based on its distinct pharmacology, has been referred to as a non opioid branch of the opioid receptor family. Opioid drugs (e.g., morphine or fentanyl), mainly targeting MOP receptors, remain the most powerful analgesics available for pain relief. However, the use of opioid drugs is associated with several side effects including respiratory depression, constipation, tolerance and abuse liability. Moreover while the effects of opioids against acute nociceptive pain are brilliant their effectiveness in chronic pain patients particularly in the case of neuropathic pain is often disappointing. Thus there is a large medical need regarding novel drugs for the treatment of chronic (particularly neuropathic) pain. The N/OFQ-NOP receptor system modulates various biological functions including pain transmission. Recent evidence obtained in rodent and non-human primate studies suggests that the simultaneous activation of NOP and MOP receptors elicits super-additive analgesic effects in animal models of pain. Thus mixed NOP/MOP agonists are worthy of development as innovative analgesics. The aim of the present study was the pharmacological characterization of novel ligands designed to act as mixed NOP/opioid receptor agonists. These compounds have been designed, synthesized and purified in the Department of chemical and pharmaceutical sciences of our University by the research groups of Claudio Trapella and Remo Guerrini. Mixed NOP/MOP agonists were generated by complimentary strategies using a single nonselective pharmacophore or two distinct pharmacophores each selective for the NOP or MOP receptor linked together with an appropriate chemical spacer to generate chimeric compounds. These chemical approaches were applied at both peptide and non-peptide molecules, obtaining the following mixed NOP/MOP ligands: the non-selective compounds PWT2-[Dmt1] and cebranopadol and the chimeric compounds DeNo and RR4Ro. The pharmacological profiles of these molecules were assayed in vitro in several assays including receptor binding, stimulated [35S]GTPγS binding, cyclic AMP formation, Western Blotting-MAPKinase detection, calcium mobilization studies performed in cells co-expressing the human recombinant receptors and chimeric G-proteins, bioluminescence resonance energy transfer (BRET) experiments investigating receptor interaction with Gprotein and β-arrestin 2, and bioassay studies in isolated tissues. Moreover the effects of DeNo were also assessed in vivo in the rat paw pressure test, while those of cebranopadol in the mouse tail withdrawal and formalin tests. We applied to the known universal opioid receptor agonist [Dmt1]N/OFQ(1-13)NH2 the recently discovered PWT technology that allows the facile synthesis its tetrabranched derivative. PWT-[Dmt1] showed in vitro the same pharmacological activity, potency and selectivity of action of the parent peptide. Studies are under way for investigating the effects of PWT-[Dmt1] in vivo after spinal administration in non human primates; it will be particularly interesting to measure the duration of action of PWT-[Dmt1] in fact previous studies with various peptide sequences demonstrated that this pharmacological parameter is greatly prolonged by the PWT chemical modification. The peptide molecule DeNo has been synthesized by linking the MOP selective agonist dermorphin with the NOP selective agonist N/OFQ. DeNo mimicked dermorphin effects in preparations expressing MOP receptor and N/OFQ actions in those expressing NOP receptors. In the guinea pig ileum, a pharmacological preparation expressing both MOP and NOP receptors, the biological activity of this compound was clearly antagonized only using a cocktail of MOP and NOP selective antagonists. Despite its MOP/NOP agonist in vitro pharmacological profile, DeNo shows only weak antinociceptive properties in vivo after spinal administration in rats. Cebranopadol behaved as universal opioid receptor agonist in calcium mobilization studies and similar results were obtained in the BRET assay where cebranopadol behaved as a potent full agonist at NOP and MOP receptors. Interestingly cebranopadol displayed low potency in promoting MOP/β-arrestin 2 interaction and no efficacy at NOP/β-arrestin 2; thus cebranopadol acts as a G-protein biased agonist particularly at the NOP receptor. The evaluation of the pharmacological effects of cebranopadol in tissues was made difficult by its very low kinetic of action. In vivo cebranopadol was able to produce potent and long lasting analgesic effects that were due to the simultaneous activation of NOP and MOP receptors. Importantly, contrary to classical opioid drugs, the analgesic potency of cebranopadol was higher in animal models of inflammatory than nociceptive pain. Finally non-peptide chimeric compounds were generated tethering the NOP agonist Ro 656570 with fentanyl derivatives of the RR series. A large series of experiments i.e. receptor binding, calcium mobilization, and bioassay were performed in order to characterize the pharmacological effects of the standard molecules (Ro 65-6570 and fentanyl), and of compounds of the RR series. From these studies RR4 and RR9 were selected as the best molecules. The chemistry needed for linking those molecules to Ro 65-6570 was very demanding and only a small amount of the chimeric compound RR4-Ro was obtained. In [35S]-GTPγS binding assay RR4-Ro displayed similar potency and efficacy as Ro 65-6570 in NOP expressing cells and similar potency but reduced efficacy compared to fentanyl in MOP cells, thus acting as mixed NOP full agonist/MOP partial agonist. In conclusion the present study investigated in great detail the pharmacological profile of several different molecules designed to act as mixed NOP/opioid receptor agonists thus providing to the scientific community novel tools useful for investigating the therapeutic potential of this class of compounds as innovative analgesics.
La famiglia dei recettori oppioidi comprende i classici recettori oppioidi, mu (MOP), delta (DOP) e kappa (KOP) ed un quarto membro, chiamato recettore NOP, identificato come il recettore del peptide endogeno nocicettina/orfanina FQ (N/OFQ). Proprio per la sua distinta farmacologia, il recettore NOP è indicato come un ramo non oppioide della famiglia dei recettori oppioidi. Nonostante l’uso di farmaci oppiacei come morfina o fentanil, selettivi principalmente per il recettore MOP, sia associato a diversi effetti collaterali, tra cui la depressione respiratoria, stipsi, la tolleranza e la responsabilità abusi, tutt’oggi i farmaci oppioidi rimangono i più potenti analgesici a disposizione per alleviare il dolore. Inoltre, mentre gli effetti degli oppioidi in un modello di dolore nocicettivo acuto sono considerati brillanti, la loro efficacia in pazienti con dolore cronico, in particolare di tipo neuropatico, diviene spesso deludente. Fatte queste considerazioni, appare ovvia la necessità medica di individuare nuovi farmaci per il trattamento di malattie croniche (soprattutto neuropatiche). Il sistema recettoriale N/OFQ-NOP è coinvolto nella modulazione di diverse funzioni biologiche tra cui la trasmissione del dolore. Recenti evidenze ottenute in modelli animali di dolore sia in roditori che in primati non umani hanno dimostrato che la simultanea attivazione di entrambi i recettori NOP e MOP è in grado di suscitare effetti analgesici con sinergia di potenziamento. Su queste basi, ligandi agonisti misti NOP/MOP sembrano degni di essere sviluppati come innovativi farmaci analgesici. Lo scopo del presente studio è stato quindi la caratterizzazione farmacologica di nuovi ligandi progettati per agire come agonisti misti dei recettori oppioidi/NOP. Questi composti sono stati progettati, sintetizzati e purificati presso il Dipartimento di Scienze Chimiche e Farmaceutiche del nostro Ateneo dai gruppi di ricerca di Claudio Trapella e Remo Guerrini. Agonisti misti MOP/NOP sono stati generati per mezzo di strategie chimiche complementari utilizzando un unico farmacoforo non selettivo o due distinti farmacofori ciascun selettivo per il recettore NOP o MOP, legati tra loro per mezzo di un apposito spacer chimico in modo da creare composti chimerici. Questi approcci chimici sono stati applicati a molecole sia di tipo peptidico che non peptidico generando i seguenti ligandi misti NOP/MOP: PWT2-[Dmt1] e cebranopadol tra i composti non selettivi, mentre Deno e RR4-Ro come composti chimerici. I profili farmacologici di queste molecole sono stati analizzati in vitro in diversi saggi, tra cui binding recettoriale, stimolazione del [35S] GTPγS, formazione di AMP ciclico, Western Blotting e rilevamento di attività MAPKinase, studi di mobilizzazione del calcio eseguiti in cellule coesprimenti i recettori ricombinanti umani e proteine-G chimeriche, saggio di trasferimento di energia bioluminescente per risonanza (BRET) volto ad indagare l'interazione del recettore con proteine G e/o β-arrestina 2, e in saggi biologici in tessuti isolati. Inoltre gli effetti di DeNo sono stati valutati anche in vivo nel paw pressure test in ratti, mentre quelli del cebranopadol in esperimenti di tail withdrawal and formalin tests in topi. La recente tecnologia PWT è stata applicata al noto agonista universale oppioide [Dmt1]N/OFQ(1-13)NH2, permettendoci di ottenere con una facile sintesi il rispettivo derivato tetramerico. PWT-[Dmt1] mostra in vitro la stessa attività farmacologica, potenza e selettività di azione del peptide d’origine, mentre sono in corso studi per valutarne gli effetti in vivo dopo somministrazione spinale in primati non umani. Sarà particolarmente interessante misurare anche la durata d’azione del composto, considerando che precedenti studi condotti con varie sequenze peptidiche hanno dimostrato che questo parametro farmacologico risulta notevolmente incrementato dall’ applicazione della tecnologia PWT. La molecola peptidica Deno è stata sintetizzata collegando l'agonista selettivo MOP dermorfina con N/OFQ, agonista selettivo NOP. Deno imita gli effetti della dermorfina in preparati che esprimono il recettore MOP e le azioni della N/OFQ in preparazioni che esprimono i recettori NOP. Nell’ ileo di cavia, una preparazione farmacologica dove entrambi i recettori MOP e NOP sono espressi, l'attività biologica del composto è stata chiaramente antagonizzata da un cocktail di antagonisti selettivi MOP e NOP. Tuttavia, nonostante la sua attività MOP/NOP agonista in vitro, Deno mostra solo deboli proprietà antinocicettive in vivo dopo somministrazione spinale nei ratti. Cebranopadol si comporta come agonista universale del recettore NOP e oppioidi in studi di mobilizzazione del calcio e risultati simili sono stati ottenuti nel saggio BRET, dove cebranopadol agisce da potente agonista pieno per i recettori NOP e MOP. Interessante notare che cebranopadol esibisce bassa potenza nella promozione di interazioni MOP/βarrestina 2 e nessuna efficacia verso NOP/β-arrestina 2; agendo così come agonista parziale bias per la proteina-G in particolare a livello del recettore NOP. Valutare gli effetti farmacologici del cebranopadol nei tessuti è stata resa difficile da una sua bassissima cinetica d’ azione. In vivo cebranopadol è stato in grado di produrre effetti analgesici potenti e duraturi causati della contemporanea attivazione dei recettori NOP e MOP. È importante sottolineare che, contrariamente ai farmaci oppioidi, la potenza analgesica di cebranopadol è maggiore in modelli animali di infiammazione del dolore nocicettivo. Infine composti chimerici non peptidici sono stati generati legando l'agonista NOP Ro 656570 con derivati del fentanil della serie RR. Una lunga serie di esperimenti, tra i quali di binding, mobilizzazione del calcio e saggi biologici sono stati eseguiti per caratterizzare gli effetti farmacologici delle molecole standard (Ro 65-6570 e fentanil) e dei composti della serie RR. Da questi studi i composti RR4 e RR9 sono stati selezionati i migliori della serie. Purtroppo la chimica necessaria al legame di tali molecole a Ro 65-6570 si è dimostrata molto impegnativa, permettendo di ottenere solo una piccola quantità del composto chimerico RR4-Ro. Nel saggio di stimolazione del [35S]GTPγS, RR4-Ro mostra potenza ed efficacia simile a Ro 65-6570 in cellule esprimenti il recettore NOP e simile potenza associata ad una ridotta efficacia rispetto al fentanil in cellule MOP, fungendo così da misto agonista pieno NOP/agonista parziale MOP. In conclusione, il presente studio ha esaminato in dettaglio il profilo farmacologico di diverse molecole progettate per agire come agonisti misti dei recettori NOP/oppioidi fornendo così alla comunità scientifica nuovi strumenti utili nello studio del potenziale terapeutico di questa classe di composti come innovativi analgesici.
Pharmacological characterization of novel ligands acting as NOP/opioid receptor agonists
CERLESI, Maria Camilla
2016
Abstract
The opioid receptor family comprises the classical opioid receptors mu (MOP), delta (DOP), and kappa (KOP) and a fourth member the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor that, based on its distinct pharmacology, has been referred to as a non opioid branch of the opioid receptor family. Opioid drugs (e.g., morphine or fentanyl), mainly targeting MOP receptors, remain the most powerful analgesics available for pain relief. However, the use of opioid drugs is associated with several side effects including respiratory depression, constipation, tolerance and abuse liability. Moreover while the effects of opioids against acute nociceptive pain are brilliant their effectiveness in chronic pain patients particularly in the case of neuropathic pain is often disappointing. Thus there is a large medical need regarding novel drugs for the treatment of chronic (particularly neuropathic) pain. The N/OFQ-NOP receptor system modulates various biological functions including pain transmission. Recent evidence obtained in rodent and non-human primate studies suggests that the simultaneous activation of NOP and MOP receptors elicits super-additive analgesic effects in animal models of pain. Thus mixed NOP/MOP agonists are worthy of development as innovative analgesics. The aim of the present study was the pharmacological characterization of novel ligands designed to act as mixed NOP/opioid receptor agonists. These compounds have been designed, synthesized and purified in the Department of chemical and pharmaceutical sciences of our University by the research groups of Claudio Trapella and Remo Guerrini. Mixed NOP/MOP agonists were generated by complimentary strategies using a single nonselective pharmacophore or two distinct pharmacophores each selective for the NOP or MOP receptor linked together with an appropriate chemical spacer to generate chimeric compounds. These chemical approaches were applied at both peptide and non-peptide molecules, obtaining the following mixed NOP/MOP ligands: the non-selective compounds PWT2-[Dmt1] and cebranopadol and the chimeric compounds DeNo and RR4Ro. The pharmacological profiles of these molecules were assayed in vitro in several assays including receptor binding, stimulated [35S]GTPγS binding, cyclic AMP formation, Western Blotting-MAPKinase detection, calcium mobilization studies performed in cells co-expressing the human recombinant receptors and chimeric G-proteins, bioluminescence resonance energy transfer (BRET) experiments investigating receptor interaction with Gprotein and β-arrestin 2, and bioassay studies in isolated tissues. Moreover the effects of DeNo were also assessed in vivo in the rat paw pressure test, while those of cebranopadol in the mouse tail withdrawal and formalin tests. We applied to the known universal opioid receptor agonist [Dmt1]N/OFQ(1-13)NH2 the recently discovered PWT technology that allows the facile synthesis its tetrabranched derivative. PWT-[Dmt1] showed in vitro the same pharmacological activity, potency and selectivity of action of the parent peptide. Studies are under way for investigating the effects of PWT-[Dmt1] in vivo after spinal administration in non human primates; it will be particularly interesting to measure the duration of action of PWT-[Dmt1] in fact previous studies with various peptide sequences demonstrated that this pharmacological parameter is greatly prolonged by the PWT chemical modification. The peptide molecule DeNo has been synthesized by linking the MOP selective agonist dermorphin with the NOP selective agonist N/OFQ. DeNo mimicked dermorphin effects in preparations expressing MOP receptor and N/OFQ actions in those expressing NOP receptors. In the guinea pig ileum, a pharmacological preparation expressing both MOP and NOP receptors, the biological activity of this compound was clearly antagonized only using a cocktail of MOP and NOP selective antagonists. Despite its MOP/NOP agonist in vitro pharmacological profile, DeNo shows only weak antinociceptive properties in vivo after spinal administration in rats. Cebranopadol behaved as universal opioid receptor agonist in calcium mobilization studies and similar results were obtained in the BRET assay where cebranopadol behaved as a potent full agonist at NOP and MOP receptors. Interestingly cebranopadol displayed low potency in promoting MOP/β-arrestin 2 interaction and no efficacy at NOP/β-arrestin 2; thus cebranopadol acts as a G-protein biased agonist particularly at the NOP receptor. The evaluation of the pharmacological effects of cebranopadol in tissues was made difficult by its very low kinetic of action. In vivo cebranopadol was able to produce potent and long lasting analgesic effects that were due to the simultaneous activation of NOP and MOP receptors. Importantly, contrary to classical opioid drugs, the analgesic potency of cebranopadol was higher in animal models of inflammatory than nociceptive pain. Finally non-peptide chimeric compounds were generated tethering the NOP agonist Ro 656570 with fentanyl derivatives of the RR series. A large series of experiments i.e. receptor binding, calcium mobilization, and bioassay were performed in order to characterize the pharmacological effects of the standard molecules (Ro 65-6570 and fentanyl), and of compounds of the RR series. From these studies RR4 and RR9 were selected as the best molecules. The chemistry needed for linking those molecules to Ro 65-6570 was very demanding and only a small amount of the chimeric compound RR4-Ro was obtained. In [35S]-GTPγS binding assay RR4-Ro displayed similar potency and efficacy as Ro 65-6570 in NOP expressing cells and similar potency but reduced efficacy compared to fentanyl in MOP cells, thus acting as mixed NOP full agonist/MOP partial agonist. In conclusion the present study investigated in great detail the pharmacological profile of several different molecules designed to act as mixed NOP/opioid receptor agonists thus providing to the scientific community novel tools useful for investigating the therapeutic potential of this class of compounds as innovative analgesics.File | Dimensione | Formato | |
---|---|---|---|
tesi_phD.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico senza Copyright
Dimensione
4.78 MB
Formato
Adobe PDF
|
4.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.