Il reticolo endoplasmatico (ER) e i mitocondri interagiscono tra di loro in più siti di contatto a formare specifici domini, denominati “membrane associate ai mitocondri” (MAMs), con differenti proprietà biochimiche e un definito set di proteine. È sempre più evidente come i siti di contatto tra mitocondri e ER rappresentino le vie preferenziali per la trasmissione del segnale e si comportino come piattaforme biologiche in cui vie di segnalazione citoplasmatiche e nucleari possano modulare la sensibilità all'apoptosi, come ad esempio manipolando l’omeostasi del segnale calcio (Ca2+) intracellulare. Durante il mio dottorato abbiamo dimostrato come due importanti oncosoppressori, p53 e promyelocytic leukemia protein (PML), localizzino nei siti di contatto ER/MAM dove svolgono un ruolo importante nella modulazione del segnale Ca2+, nella morte cellulare e nel tumore. Abbiamo dimostrato che p53 si arricchisce alle MAMs in seguito a trattamenti antitumorali che portano a morte cellulare. In questi siti, p53 interagisce con la porzione C-terminale della pompa sarco / ER Ca2+ ATPasi (SERCA), cambiando il suo stato ossidativo e, di conseguenza, aumentando l’accumulo del Ca2+ reticolare. Per confermare questi risultati in vivo, abbiamo utilizzato una piattaforma tecnologica innovativa per la microscopia che permette il rilevamento del segnale Ca2+ in una massa tumorale tridimensionale. Utilizzando questa tecnica siamo stati in grado di confermare in vivo che l’oncosoppressore p53 è in grado di modulare l’omeostasi del Ca2+ in risposta alla fototerapia antitumorale (PDT), favorendo la sensibilità delle cellule all’apoptosi e di conseguenza limitando la crescita tumorale. Queste evidenze sottolineano come le MAMs siano importanti domini specializzati dove molti oncosoppressori esercitano la loro attività pro-apoptotica mediante vie mediate dal Ca2+. Nella seconda parte del mio dottorato, abbiamo identificato un nuovo ruolo extranucleare di PML come regolatore negativo dell’autofagia. E’ già noto come l’interfaccia ER-MAM rappresenti anche la piattaforma biologica primaria per la formazione degli autofagosomi e per il meccanismo di sopravvivenza via autofagia. Abbiamo dimostrato come la localizzazione di PML ai siti di contatto ER-mitocondri non sia solo fondamentale per il controllo dell’apoptosi, ma anche per la regolazione dell’autofagia, reprimendo a livello di questi siti la formazione degli autofagosomi e, di conseguenza, l’induzione dell’autofagia. Abbiamo osservato in vivo che l’assenza di PML promuove lo sviluppo tumorale causato da alti livelli di autofagia nel tumore che portano a resistenza contro farmaci antitumorali. Dal momento che alti livelli di autofagia promuovono la secrezione di citochine infiammatorie come l’interleuchina 1-β (IL-1β) e che il maggior complesso coinvolto nel rilascio di IL-1β, il NLRP3 inflammasoma, è stato identificato localizzare nei domini ER/MAMs, studi futuri saranno orientati al ruolo di PML nel processo infiammatorio.

The endoplasmic reticulum (ER) and mitochondria join together at multiple contact sites to form specific domains, termed mitochondria-ER associated membranes (MAMs), with distinct biochemical properties and a characteristic set of proteins. There is growing evidence to indicate that contact sites between the mitochondria and ER act as preferential gateways for signal transmission and behave as platforms where components of cytoplasmic and nuclear pathways can modulate the sensitivity to apoptosis, such as by manipulating the rheostat represented by Ca2+ transmission. During my PhD we demonstrated that two master tumor suppressors, p53 and the promyelocytic leukemia protein (PML) localize at the ER/MAM contact sites where they play an important role in modulating Ca2+ signaling, cell death and cancer. We found that p53 becomes enriched at MAM compartments after anticancer treatments enhancing cell death. At these sites, p53 interacts with the C-terminal portion of the sarco/ER Ca2+ATPase (SERCA) pump, changing its oxidative state and, in turn, increasing ER Ca2+ loading. To test the relevance of these findings in an in vivo approach of tumor environment, we used a novel technological platform for the intravital microscopy allowing detection of Ca2+ signaling in a three dimensional tumor mass. Using this technique we were able to confirm in vivo that the tumor suppressor p53 is able to modulate Ca2+ homeostasis in response to a photodynamic cancer therapy (PDT) favoring cells sensitivity to apoptosis and thus in turn limiting tumor growth. These evidences highlighted how the MAMs are important specialized domains where many tumor suppressors exert their pro-apoptotic activities via calcium-mediated pathways. In the second part of my PhD work, we identified a new extra-nuclear role of PML as a negative regulator of autophagy. It is already known that ER–mitochondria interface also represents the primary platform for autophagosome formation and the function of pro-survival autophagy machinery. We provide evidence that the localization of PML at the ER-mitochondria contact sites is fundamental not only for apoptosis control but also for autophagy regulation, repressing at these sites autophagosome formation and, thus, autophagy induction. We observed in vivo that the absence of PML promotes tumor development associated with resistance to anticancer drugs due to increased autophagy levels in the tumor. Since autophagy levels promote the secretion of inflammatory cytokines like interleuchin-1β (IL1β) and the major complex involved in the IL-1β released, the NLRP3 inflammasome, it has been identified at the ER/MAM domains, our future directions will be focused to explore the role of PML in inflammation process.

Extranuclear promyelocytic leukemia protein (PML) and p53 down regulation promote cancer by subverting multiple tumor suppression pathways

MISSIROLI, Sonia
2016

Abstract

The endoplasmic reticulum (ER) and mitochondria join together at multiple contact sites to form specific domains, termed mitochondria-ER associated membranes (MAMs), with distinct biochemical properties and a characteristic set of proteins. There is growing evidence to indicate that contact sites between the mitochondria and ER act as preferential gateways for signal transmission and behave as platforms where components of cytoplasmic and nuclear pathways can modulate the sensitivity to apoptosis, such as by manipulating the rheostat represented by Ca2+ transmission. During my PhD we demonstrated that two master tumor suppressors, p53 and the promyelocytic leukemia protein (PML) localize at the ER/MAM contact sites where they play an important role in modulating Ca2+ signaling, cell death and cancer. We found that p53 becomes enriched at MAM compartments after anticancer treatments enhancing cell death. At these sites, p53 interacts with the C-terminal portion of the sarco/ER Ca2+ATPase (SERCA) pump, changing its oxidative state and, in turn, increasing ER Ca2+ loading. To test the relevance of these findings in an in vivo approach of tumor environment, we used a novel technological platform for the intravital microscopy allowing detection of Ca2+ signaling in a three dimensional tumor mass. Using this technique we were able to confirm in vivo that the tumor suppressor p53 is able to modulate Ca2+ homeostasis in response to a photodynamic cancer therapy (PDT) favoring cells sensitivity to apoptosis and thus in turn limiting tumor growth. These evidences highlighted how the MAMs are important specialized domains where many tumor suppressors exert their pro-apoptotic activities via calcium-mediated pathways. In the second part of my PhD work, we identified a new extra-nuclear role of PML as a negative regulator of autophagy. It is already known that ER–mitochondria interface also represents the primary platform for autophagosome formation and the function of pro-survival autophagy machinery. We provide evidence that the localization of PML at the ER-mitochondria contact sites is fundamental not only for apoptosis control but also for autophagy regulation, repressing at these sites autophagosome formation and, thus, autophagy induction. We observed in vivo that the absence of PML promotes tumor development associated with resistance to anticancer drugs due to increased autophagy levels in the tumor. Since autophagy levels promote the secretion of inflammatory cytokines like interleuchin-1β (IL1β) and the major complex involved in the IL-1β released, the NLRP3 inflammasome, it has been identified at the ER/MAM domains, our future directions will be focused to explore the role of PML in inflammation process.
PINTON, Paolo
GIORGI, Carlotta
BERNARDI, Francesco
File in questo prodotto:
File Dimensione Formato  
Tesi_Sonia Missiroli PDFA.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Pubblico senza Copyright
Dimensione 6.15 MB
Formato Adobe PDF
6.15 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2403245
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact