Although most of bone defects can heal spontaneously with minimal treatment, repair of the bone defects in non-union fractures and excessive loss of bone as a result of trauma or malignant tumors resection is still a major challenge to orthopaedic surgeons. Cell therapy methods in which mesenchymal stem cells (MSCs) are the cellular key players, are used to repair bone defects by their stimulation to osteogenic lineage through osteogenic differentiation process. Osteogenic differentiation is a complex process which involves several signaling pathways such as Notch signaling, an evolutionarily conserved signaling pathway that seems to be essential for proper skeletal development and bone renewal. In spite of the several previous in vivo and in vitro studies on Notch signaling pathway during bone formation and osteogenic differentiation, still several conflicting results are present in literature, as both inhibitory and stimulatory effects have been reported. Moreover, most previous in vitro studies have investigated the role of Notch pathway by using cell manipulation protocols leading to the overexpression or inactivation of specific Notch components or only during a short period of the whole differentiation period. From this background, we set out to clarify the role of Notch signaling during the spontaneous in vitro differentiation of human MSCs without any genetic cell manipulation. To this aim, we induced the osteogenic differentiation of MSCs and verified the differentiation process by the analysis of typical early and late osteogenic markers (ALP, Osteocalcin and mineralization), as well as the gene expression of the main osteogenic transcription factors (Runx2, Osterix and Dlx5). Potential changes in the expression of Notch signaling pathway components, including receptors, ligands and Notch nuclear genes, were analyzed and correlated to the differentiation events during the whole period of hMSCs differentiation in culture (28 days). Moreover, we evaluated the effects of Notch signaling inhibition on the differentiation process in order to confirm the potential involvement of the pathway. Results have shown that Notch pathway is involved in driving osteogenic differentiation and identified Hes5 and Hes1 as the Notch target genes involved, following the activation of the pathway by the Notch4 receptor. On the other hand, we have also identified, at specific times during differentiation, a significant increase in the expression of Hey1, which appears as another important gene involved in osteogenic differentiation, although by a signaling pathway different from the canonical Notch pathway. In fact, in agreement with the complexity of the signal transduction pathways involved in osteogenic differentiation, our results confirm that other signaling pathways are involved, as suggested by the temporal shift in the increase of osteogenic transcription factors expression and Notch nuclear target genes, as well as by the Notch pathway independent increase in Hey1, demonstrated by the use of Notch signaling inhibitors. Further, for the first time in this study we show that the activities of pulsed electromagnetic fields (PEMFs), a well-known biophysical stimuli in favoring osteogenic differentiation and bone healing, can be associated to the modulation of Notch pathway as well as to the increased expression of the nuclear gene Hey1. These results add important knowledge concerning the molecular mechanisms by which PEMFs can modulate osteogenesis. Taken together, the data of this study show that Notch signaling pathway can favor the osteogenic differentiation of hMSCs. These results may be relevant also for the optimization of therapeutic treatments as well as bone tissue engineering approaches in clinics.

Sebbene la maggior parte dei difetti ossei possa guarire spontaneamente, tuttavia in clinica i ritardi di consolidazione ossea, così come le condizioni in cui la perdita di tessuto osseo è eccessiva in seguito a traumi o tumori maligni rappresentano ancora una sfida importante per i chirurghi ortopedici. Metodi terapeutici basati sull’utilizzo di cellule staminali mesenchimali (MSC) e la stimolazione del loro differenziamento verso la linea osteoblastica sono ampiamente studiati per la riparazione delle lesioni ossee in tali condizioni cliniche. Il differenziamento osteogenico è un processo complesso che coinvolge diverse vie di trasduzione del segnale, che comprendono la via di Notch, una via altamente conservata che sembra essere essenziale per il corretto sviluppo scheletrico e il rinnovamento delle ossa. Nonostante i numerosi studi in vivo e in vitro relativi alla via di Notch durante la formazione delle ossa ed il differenziamento osteogenico, ancora diversi risultati contrastanti sono presenti in letteratura, poiché sono stati riportati sia effetti inibitori e stimolatori. Inoltre, la maggior parte degli studi precedenti in vitro hanno studiato il ruolo della via di Notch, attraverso l’induzione della overespressione o della inattivazione di specifici componenti appartenenti alla via di trasduzione o analizzando il suo potenziale coinvolgimento solo durante un breve periodo rispetto all’intero periodo di differenziamento. In base a quanto esposto, lo scopo di questo studio è stato chiarire il ruolo del segnale di Notch durante il differenziamento di cellule staminali mesenchimali umane indotto in vitro, in assenza di manipolazione genetica delle cellule. A tale scopo, abbiamo indotto il differenziamento osteogenico di cellule staminali mesenchimali e verificato il processo differenziativo tramite l'analisi dei tipici marcatori osteogenici precoci e tardivi (ALP, Osteocalcina e mineralizzazione), e della espressione genica dei principali fattori di trascrizione osteogenici (Runx2, Osterix e Dlx5). Possibili variazioni nella espressione di componenti appartenenti alla via di segnalazione Notch comprendenti i recettori, i ligandi ed i geni nucleari, sono state analizzate e correlate ad i principali eventi differenziativi durante tutto il periodo di differenziamento cellulare in coltura (28 giorni). Inoltre, abbiamo valutato gli effetti della inibizione della via di Notch sul differenziamento per confermare il potenziale coinvolgimento della via. I risultati ottenuti hanno dimostrato che la via di Notch è coinvolta nel favorire il processo di differenziamento osteogenico ed hanno suggerito che i geni nucleari target della via di Notch, Hes5 e Hes1 siano coinvolti, a seguito dell'attivazione dal recettore Notch4. Inoltre è stato osservato un significativo aumento dell'espressione di Hey1, un altro gene bersaglio della via di Notch, in tempi specifici del differenziamento, che appare quindi come un altro importante gene coinvolto nel differenziamento osteogenico, sebbene i dati suggeriscano che la sua espressione sia regolata da un’altra via di segnalazione cellulare. Infatti, in accordo con la complessità delle vie di trasduzione del segnale implicate nel differenziamento osteogenico, i nostri risultati confermano che altre vie di segnalazione sono coinvolte, come suggerito dallo shift temporale nell’aumento di espressione dei tipici fattori di trascrizione osteogenica e dei geni nucleari della via di Notch, così come dall’aumentata espressione di Hey1, indipendentemente dalla via di Notch, come dimostrato dall’utilizzo di inibitori specifici della via di segnlazione. Inoltre, per la prima volta in questo studio dimostriamo che gli effetti dei campi elettromagnetici pulsati (CEMP), che rappresentano un noto stimolo biofisico coinvolto nel favorire il differenziamento osteogenico e la guarigione ossea, possono essere associati alla modulazione della via di Notch e all’aumento della espressione del gene nucleare Hey1. Questi risultati forniscono importanti nuove informazioni riguardanti i meccanismi molecolari attraverso i quali i CEMP possono modulare l'osteogenesi. Complessivamente i risultati di questo studio chiariscono il ruolo della via di Notch nel differenziamento osteogenico indicando che tale via è in grado di stimolare tale processo differenziativo di cellule staminali mesenchimali umane. Tali risultati possono essere rilevanti anche dal punto di vista clinico per la ottimizzazione dei trattamenti terapeutici e degli approcci di ingegneria tissutale per la riparazione ossea.

The Notch pathway in osteogenic differentiation: an In vitrio study

BAGHERI, Leila
2016

Abstract

Although most of bone defects can heal spontaneously with minimal treatment, repair of the bone defects in non-union fractures and excessive loss of bone as a result of trauma or malignant tumors resection is still a major challenge to orthopaedic surgeons. Cell therapy methods in which mesenchymal stem cells (MSCs) are the cellular key players, are used to repair bone defects by their stimulation to osteogenic lineage through osteogenic differentiation process. Osteogenic differentiation is a complex process which involves several signaling pathways such as Notch signaling, an evolutionarily conserved signaling pathway that seems to be essential for proper skeletal development and bone renewal. In spite of the several previous in vivo and in vitro studies on Notch signaling pathway during bone formation and osteogenic differentiation, still several conflicting results are present in literature, as both inhibitory and stimulatory effects have been reported. Moreover, most previous in vitro studies have investigated the role of Notch pathway by using cell manipulation protocols leading to the overexpression or inactivation of specific Notch components or only during a short period of the whole differentiation period. From this background, we set out to clarify the role of Notch signaling during the spontaneous in vitro differentiation of human MSCs without any genetic cell manipulation. To this aim, we induced the osteogenic differentiation of MSCs and verified the differentiation process by the analysis of typical early and late osteogenic markers (ALP, Osteocalcin and mineralization), as well as the gene expression of the main osteogenic transcription factors (Runx2, Osterix and Dlx5). Potential changes in the expression of Notch signaling pathway components, including receptors, ligands and Notch nuclear genes, were analyzed and correlated to the differentiation events during the whole period of hMSCs differentiation in culture (28 days). Moreover, we evaluated the effects of Notch signaling inhibition on the differentiation process in order to confirm the potential involvement of the pathway. Results have shown that Notch pathway is involved in driving osteogenic differentiation and identified Hes5 and Hes1 as the Notch target genes involved, following the activation of the pathway by the Notch4 receptor. On the other hand, we have also identified, at specific times during differentiation, a significant increase in the expression of Hey1, which appears as another important gene involved in osteogenic differentiation, although by a signaling pathway different from the canonical Notch pathway. In fact, in agreement with the complexity of the signal transduction pathways involved in osteogenic differentiation, our results confirm that other signaling pathways are involved, as suggested by the temporal shift in the increase of osteogenic transcription factors expression and Notch nuclear target genes, as well as by the Notch pathway independent increase in Hey1, demonstrated by the use of Notch signaling inhibitors. Further, for the first time in this study we show that the activities of pulsed electromagnetic fields (PEMFs), a well-known biophysical stimuli in favoring osteogenic differentiation and bone healing, can be associated to the modulation of Notch pathway as well as to the increased expression of the nuclear gene Hey1. These results add important knowledge concerning the molecular mechanisms by which PEMFs can modulate osteogenesis. Taken together, the data of this study show that Notch signaling pathway can favor the osteogenic differentiation of hMSCs. These results may be relevant also for the optimization of therapeutic treatments as well as bone tissue engineering approaches in clinics.
DE MATTEI, Monica
ONGARO, Alessia
PELLATI, Agnese
CAPITANI, Silvano
File in questo prodotto:
File Dimensione Formato  
Leila Bagheri - PhD Thesis - 30 March 2016.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Pubblico senza Copyright
Dimensione 4.89 MB
Formato Adobe PDF
4.89 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2403237
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact