We use an isomorphism established by Langenbruch between some sequence spaces and weighted spaces of generalized functions to give sufficient conditions for the (Beurling type) space ${mathcal S}_{(M_p)}$ to be nuclear. As a consequence, we obtain that for a weight function $omega$ satisfying the mild condition: $2omega(t)leq omega(Ht)+H$ for some $H>1$ and for all $tgeq0$, the space ${mathcal S}_omega$ in the sense of Björck is also nuclear.
About the nuclearity of ${mathcal S}_{(M_p)}$ and ${mathcal S}_{omega}$
Chiara Boiti
Primo
;
2020
Abstract
We use an isomorphism established by Langenbruch between some sequence spaces and weighted spaces of generalized functions to give sufficient conditions for the (Beurling type) space ${mathcal S}_{(M_p)}$ to be nuclear. As a consequence, we obtain that for a weight function $omega$ satisfying the mild condition: $2omega(t)leq omega(Ht)+H$ for some $H>1$ and for all $tgeq0$, the space ${mathcal S}_omega$ in the sense of Björck is also nuclear.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Boiti2020_Chapter_AboutTheNuclearityOfSMpMathcal.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
188.23 kB
Formato
Adobe PDF
|
188.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1902.09187.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
153.63 kB
Formato
Adobe PDF
|
153.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.