In this paper, the impact of the forming temperature on the reliability of Hafnium-based RRAM arrays has been investigated. A wide range of high temperatures from 25 °C to 150 °C during the forming operations have been applied. Endurance and retention tests have been performed at room temperature and at 150 °C, respectively. The optimized Incremental Step Pulse and Verify Algorithm (ISPVA) has been used for write operations in order to reduce the cell-to-cell variability. The electricalperformance of HfO2 and Hf1-1-xAlxAlxO yRRAM arrays will be compared.
Temperature impact and programming algorithm for RRAM based memories
Grossi, A.;Zambelli, C.;Olivo, P.;
2018
Abstract
In this paper, the impact of the forming temperature on the reliability of Hafnium-based RRAM arrays has been investigated. A wide range of high temperatures from 25 °C to 150 °C during the forming operations have been applied. Endurance and retention tests have been performed at room temperature and at 150 °C, respectively. The optimized Incremental Step Pulse and Verify Algorithm (ISPVA) has been used for write operations in order to reduce the cell-to-cell variability. The electricalperformance of HfO2 and Hf1-1-xAlxAlxO yRRAM arrays will be compared.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
IMWS-AMP.2018.8457132.pdf
solo gestori archivio
Descrizione: Full text ahead of print
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.