Optical wireless (OW) links have been recently proposed as an interconnection technology for multiple processing cores operating in parallel on the same chip. OW communication is also a mature option for indoor and outdoor applications. Design and analysis of networks with optical wireless links require a careful investigation of cross-link interference which plays a key-role on the performance and efficiency of systems that reuse the same channel for multiple parallel transmissions. In this paper we analyze the bit-error rate performance of OW links for on-chip applications with cross-link cochannel interference. As a novelty with respect to known literature on crosstalk in optical communications we consider asynchronous data transmission and address the system performance in case of heavy interference. Analytical methods are used to derive error probabilities as a function of signal-to-noise ratio (SNR), crosstalk power ratio, detection threshold, pulse shaping. Both exact and tight approximation methods are considered. As shown in the results, robustness against interference increases with asynchronous transmission, RZ pulse shaping and suitable design of detection threshold. It is also shown how the proposed analysis can be used to evaluate the reuse distance between two parallel links simultaneously transmitting in the same direction.

Interference Analysis for Optical Wireless Interconnections

Jinous Shafiei Dehkordi
Primo
;
Velio Tralli
Ultimo
2018

Abstract

Optical wireless (OW) links have been recently proposed as an interconnection technology for multiple processing cores operating in parallel on the same chip. OW communication is also a mature option for indoor and outdoor applications. Design and analysis of networks with optical wireless links require a careful investigation of cross-link interference which plays a key-role on the performance and efficiency of systems that reuse the same channel for multiple parallel transmissions. In this paper we analyze the bit-error rate performance of OW links for on-chip applications with cross-link cochannel interference. As a novelty with respect to known literature on crosstalk in optical communications we consider asynchronous data transmission and address the system performance in case of heavy interference. Analytical methods are used to derive error probabilities as a function of signal-to-noise ratio (SNR), crosstalk power ratio, detection threshold, pulse shaping. Both exact and tight approximation methods are considered. As shown in the results, robustness against interference increases with asynchronous transmission, RZ pulse shaping and suitable design of detection threshold. It is also shown how the proposed analysis can be used to evaluate the reuse distance between two parallel links simultaneously transmitting in the same direction.
2018
9781538660096
File in questo prodotto:
File Dimensione Formato  
Interference_Analysis_for_Optical_Wireless_Communi.pdf

accesso aperto

Descrizione: Post-print
Tipologia: Post-print
Licenza: Creative commons
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2395551
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact