In the study of the effects of habitat fragmentation on biodiversity the role of spatial processes reveals of great interest since both the variation of size of the domains as well as their heterogeneity largely affects the dynamics of species. In order to begin a preliminary study about the effects of habitat fragmentation on wolf - wild boar pair populating the Italian "Alta Murgia" Natura 2000 site, object of interest for FP7 project BIOSOS, (BIOdiversity multi-SOurce Monitoring System: from Space TO Species), spatially explicit models described by reaction-diffusion partial differential equations are considered. Numerical methods based on partitioned Runge-Kutta schemes which use an implicit scheme for the stiff diffusive term and a partitioned symplectic scheme for the reaction function are here proposed. We are motivated by the classical results about Lotka-Volterra model described by ordinary differential equations to which the spatially explicit model reduces for diffusion coefficients tending to zero: for their accurate solution symplectic schemes have to be used for an optimal long run preservation of the dynamics invariant. Moreover, for models based on logistic growth and Holling type II functional predator response we verify the better performance of our schemes when compared with classical implicit-explicit (IMEX) schemes on chaotic dynamics given in literature.
In the study of the effects of habitat fragmentation on biodiversity the role of spatial processes reveals of great interest since both the variation of size of the domains as well as their heterogeneity largely affects the dynamics of species. In order to begin a preliminary study about the effects of habitat fragmentation on wolf - wild boar pair populating the Italian "Alta Murgia" Natura 2000 site, object of interest for FP7 project BIOSOS, (BIOdiversity multi-SOurce Monitoring System: from Space TO Species), spatially explicit models described by reaction-diffusion partial differential equations are considered. Numerical methods based on partitioned Runge-Kutta schemes which use an implicit scheme for the stiff diffusive term and a partitioned symplectic scheme for the reaction function are here proposed. We are motivated by the classical results about Lotka-Volterra model described by ordinary differential equations to which the spatially explicit model reduces for diffusion coefficients tending to zero: for their accurate solution symplectic schemes have to be used for an optimal long run preservation of the dynamics invariant. Moreover, for models based on logistic growth and Holling type II functional predator response we verify the better performance of our schemes when compared with classical implicit-explicit (IMEX) schemes on chaotic dynamics given in literature. © 2012 American Institute of Physics.
Implicit - Symplectic partitioned (IMSP) Runge-Kutta schemes for predator-prey dynamics
RAGNI, Stefania
2012
Abstract
In the study of the effects of habitat fragmentation on biodiversity the role of spatial processes reveals of great interest since both the variation of size of the domains as well as their heterogeneity largely affects the dynamics of species. In order to begin a preliminary study about the effects of habitat fragmentation on wolf - wild boar pair populating the Italian "Alta Murgia" Natura 2000 site, object of interest for FP7 project BIOSOS, (BIOdiversity multi-SOurce Monitoring System: from Space TO Species), spatially explicit models described by reaction-diffusion partial differential equations are considered. Numerical methods based on partitioned Runge-Kutta schemes which use an implicit scheme for the stiff diffusive term and a partitioned symplectic scheme for the reaction function are here proposed. We are motivated by the classical results about Lotka-Volterra model described by ordinary differential equations to which the spatially explicit model reduces for diffusion coefficients tending to zero: for their accurate solution symplectic schemes have to be used for an optimal long run preservation of the dynamics invariant. Moreover, for models based on logistic growth and Holling type II functional predator response we verify the better performance of our schemes when compared with classical implicit-explicit (IMEX) schemes on chaotic dynamics given in literature. © 2012 American Institute of Physics.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.