Region-of-interest (ROI) reconstruction in computed tomography (CT) is a problem receiving increasing attention in the medical imaging community, due to its potential to lower exposure to X-ray radiation and to reduce the scanning time. Since the ROI reconstruction problem requires to deal with truncated projection images, classical CT reconstruction algorithms tend to become very unstable and the solution of this problem requires either ad hoc analytic formulas or more sophisticated numerical schemes. In this paper, we introduce a novel approach for ROI CT reconstruction, formulated as a convex optimization problem with a regularized functional based on shearlets or wavelets. Our numerical implementation consists of an iterative algorithm based on the scaled gradient projection method. As illustrated by numerical tests in the context of fan beam CT, our algorithm is insensitive to the location of the ROI and remains very stable also when the ROI size is rather small.
Shearlet-based regularized ROI reconstruction in fan beam computed tomography
BUBBA, Tatiana Alessandra;ZANGHIRATI, Gaetano;
2015
Abstract
Region-of-interest (ROI) reconstruction in computed tomography (CT) is a problem receiving increasing attention in the medical imaging community, due to its potential to lower exposure to X-ray radiation and to reduce the scanning time. Since the ROI reconstruction problem requires to deal with truncated projection images, classical CT reconstruction algorithms tend to become very unstable and the solution of this problem requires either ad hoc analytic formulas or more sophisticated numerical schemes. In this paper, we introduce a novel approach for ROI CT reconstruction, formulated as a convex optimization problem with a regularized functional based on shearlets or wavelets. Our numerical implementation consists of an iterative algorithm based on the scaled gradient projection method. As illustrated by numerical tests in the context of fan beam CT, our algorithm is insensitive to the location of the ROI and remains very stable also when the ROI size is rather small.File | Dimensione | Formato | |
---|---|---|---|
ShearletsBasedROICT_SPIE2015_PrePrint.pdf
accesso aperto
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
426.75 kB
Formato
Adobe PDF
|
426.75 kB | Adobe PDF | Visualizza/Apri |
ShearletsBasedRegularizedROI_SPIEproceeding2015.pdf
solo gestori archivio
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
465.11 kB
Formato
Adobe PDF
|
465.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.