Recently, the problem of representing uncertainty in Description Logics (DLs) has received an increasing attention. In probabilistic DLs, axioms contain numeric parameters that are often difficult to specify or to tune for a human. In this paper we present an approach for learning and tuning the parameters of probabilistic ontologies from data. The resulting algorithm, called EDGE, %for Em over bDds for description loGics paramEter learning, is targeted to DLs following the DISPONTE approach, that applies the distribution semantics to DLs.

Parameter Learning for Probabilistic Ontologies

RIGUZZI, Fabrizio;BELLODI, Elena;LAMMA, Evelina;ZESE, Riccardo
2013

Abstract

Recently, the problem of representing uncertainty in Description Logics (DLs) has received an increasing attention. In probabilistic DLs, axioms contain numeric parameters that are often difficult to specify or to tune for a human. In this paper we present an approach for learning and tuning the parameters of probabilistic ontologies from data. The resulting algorithm, called EDGE, %for Em over bDds for description loGics paramEter learning, is targeted to DLs following the DISPONTE approach, that applies the distribution semantics to DLs.
2013
9783642396656
9783642396663
Statistical Relational Learning; Probabilistic Inductive Logic Programming; Probabilistic Logic Programming; Expectation Maximization; Binary Decision Diagrams; Logic Programs with Annotated Disjunctions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1867518
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact