Representing uncertain information is very important for modeling real world domains. Recently, the DISPONTE semantics has been proposed for probabilistic description logics. In DISPONTE, the axioms of a knowledge base can be annotated with a set of variables and a real number between 0 and 1. This real number represents the probability of each version of the axiom in which the specified variables are instantiated. In this paper we present the algorithm BUNDLE for computing the probability of queries from DISPONTE knowledge bases that follow the $\mathcal{ALC}$ semantics. BUNDLE exploits an underlying DL reasoner, such as Pellet, that is able to return explanations for queries. The explanations are encoded in a Binary Decision Diagram from which the probability of the query is computed. The experiments performed by applying BUNDLE to probabilistic knowledge bases show that it can handle ontologies of realistic size and is competitive with the system PRONTO for the probabilistic description logic P-$\mathcal{SHIQ}$(D).

BUNDLE: A reasoner for probabilistic ontologies

RIGUZZI, Fabrizio;LAMMA, Evelina;BELLODI, Elena;ZESE, Riccardo
2013

Abstract

Representing uncertain information is very important for modeling real world domains. Recently, the DISPONTE semantics has been proposed for probabilistic description logics. In DISPONTE, the axioms of a knowledge base can be annotated with a set of variables and a real number between 0 and 1. This real number represents the probability of each version of the axiom in which the specified variables are instantiated. In this paper we present the algorithm BUNDLE for computing the probability of queries from DISPONTE knowledge bases that follow the $\mathcal{ALC}$ semantics. BUNDLE exploits an underlying DL reasoner, such as Pellet, that is able to return explanations for queries. The explanations are encoded in a Binary Decision Diagram from which the probability of the query is computed. The experiments performed by applying BUNDLE to probabilistic knowledge bases show that it can handle ontologies of realistic size and is competitive with the system PRONTO for the probabilistic description logic P-$\mathcal{SHIQ}$(D).
2013
9783642396656
9783642396663
Probabilistic Ontologies; Probabilistic Description Logics; OWL; Probabilistic Logic Programming; Distribution Semantics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1867517
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact