In this paper we report on our early experience on porting, optimizing and benchmarking a Lattice Boltzmann (LB) code on the Xeon-Phi co-processor, the first generally available version of the new Many Integrated Core (MIC) architecture, developed by Intel. We consider as a test-bed a state-of-the-art LB model, that accurately reproduces the thermo-hydrodynamics of a 2D- fluid obeying the equations of state of a perfect gas. The regular structure of LB algorithms makes it relatively easy to identify a large degree of available parallelism. However, mapping a large fraction of this parallelism onto this new class of processors is not straightforward. The D2Q37 LB algorithm considered in this paper is an appropriate test-bed for this architecture since the critical computing kernels require high performances both in terms of memory bandwidth for sparse memory access patterns and number crunching capability. We describe our implementation of the code, that builds on previous experience made on other (simpler) many-core processors and GPUs, present benchmark results and measure performances, and finally compare with the results obtained by previous implementations developed on state-of-the-art classic multi-core CPUs and GP-GPUs.

Early Experience on Porting and Running a Lattice Boltzmann Code on the Xeon-Phi Co-Processor

PIVANTI, Marcello;SCHIFANO, Sebastiano Fabio;TRIPICCIONE, Raffaele
2013

Abstract

In this paper we report on our early experience on porting, optimizing and benchmarking a Lattice Boltzmann (LB) code on the Xeon-Phi co-processor, the first generally available version of the new Many Integrated Core (MIC) architecture, developed by Intel. We consider as a test-bed a state-of-the-art LB model, that accurately reproduces the thermo-hydrodynamics of a 2D- fluid obeying the equations of state of a perfect gas. The regular structure of LB algorithms makes it relatively easy to identify a large degree of available parallelism. However, mapping a large fraction of this parallelism onto this new class of processors is not straightforward. The D2Q37 LB algorithm considered in this paper is an appropriate test-bed for this architecture since the critical computing kernels require high performances both in terms of memory bandwidth for sparse memory access patterns and number crunching capability. We describe our implementation of the code, that builds on previous experience made on other (simpler) many-core processors and GPUs, present benchmark results and measure performances, and finally compare with the results obtained by previous implementations developed on state-of-the-art classic multi-core CPUs and GP-GPUs.
2013
Lattice Boltzmann; Many-core systems; Performance optimization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1813537
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 36
social impact