Two proper polynomial maps $f_1, \,f_2 \colon \mC^n \lr \mC^n$ are said to be \emph{equivalent} if there exist $\Phi_1,\, \Phi_2 \in \textrm{Aut}(\mC^n)$ such that $f_2=\Phi_2 \circ f_1 \circ \Phi_1$. In this article we investigate proper polynomial maps of topological degree $d \geq 2$ up to equivalence. In particular we describe some of our recent results in the case $n=2$ and we partially extend them in higher dimension.

Proper Polynomial Self-Maps of the Affine Space: State of the Art and New Results.

BISI, Cinzia;
2011

Abstract

Two proper polynomial maps $f_1, \,f_2 \colon \mC^n \lr \mC^n$ are said to be \emph{equivalent} if there exist $\Phi_1,\, \Phi_2 \in \textrm{Aut}(\mC^n)$ such that $f_2=\Phi_2 \circ f_1 \circ \Phi_1$. In this article we investigate proper polynomial maps of topological degree $d \geq 2$ up to equivalence. In particular we describe some of our recent results in the case $n=2$ and we partially extend them in higher dimension.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1683678
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact