This study proposed a model based fault detection and isolation (FDI) method using multi-layer perceptron (MLP) neural network. Detection and isolation of realistic faults of an industrial gas turbine engine in steady-state conditions is mainly centered. A bank of MLP models which are obtained by nonlinear dynamic system identification is used to generate the residuals, and also simple thresholding is used for the intend of fault detection while another MLP neural network is employed to isolate the faults. The proposed FDI method was tested on a singleshaft industrial gas turbine prototype and it have been evaluated using non-linear simulations based on the real gas turbine data. A brief comparative study with other related works in the literature on this gas turbine benchmark is also provided to show the benefits of proposed FDI method.

Model-based Fault Detection and Isolation using Neural Networks: An Industrial Gas Turbine Case Study

SIMANI, Silvio
2011

Abstract

This study proposed a model based fault detection and isolation (FDI) method using multi-layer perceptron (MLP) neural network. Detection and isolation of realistic faults of an industrial gas turbine engine in steady-state conditions is mainly centered. A bank of MLP models which are obtained by nonlinear dynamic system identification is used to generate the residuals, and also simple thresholding is used for the intend of fault detection while another MLP neural network is employed to isolate the faults. The proposed FDI method was tested on a singleshaft industrial gas turbine prototype and it have been evaluated using non-linear simulations based on the real gas turbine data. A brief comparative study with other related works in the literature on this gas turbine benchmark is also provided to show the benefits of proposed FDI method.
2011
9780769544953
9781457710780
Fault detection and isolation; Neural network; industrial gas turbine; Multi-layer perceptron; System identification; Nonlinear predictor model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1616472
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact